Abstract:
A dimmable LED illumination system includes a power converting circuit and a lamp. The power converting circuit is electrically connected to a power source to convert electric power of the power source into a voltage signal. The lamp includes a DC/DC converter and a LED module, wherein the DC/DC converter is electrically connected to the power converting circuit to convert the voltage signal into a corresponding current signal. The LED module is electrically connected to the DC/DC converter to be driven by the current signal to emit light. By adjusting a voltage provided by the power converting circuit, a current provided by the DC/DC converter could be adjusted as well, which changes a luminance of the LED module.
Abstract:
A method of transmitting signals applied for a loading control system, which includes a phase angle control module and a driving module, wherein the phase angle control module is electrically connected to an input interface. The method includes the following steps: A. switch the input interface from a first status to a second status; B. modify a voltage waveform of an AC power to make the voltage waveform have a delayed conduction angle in half of its wave period; C. check the delayed conduction angle of the voltage waveform; D. transmitting an electric signal to a loading according to the delayed conduction angle.
Abstract:
A power supply apparatus for applying a method of supplying a loading with an electric power within a predetermined range of a default power, which includes a driving unit, a voltage sensing unit, and a feedback control unit. The driving unit receives power from a power source, and supplies the loading with a working voltage and a working current; the voltage sensing unit detects the working voltage; the feedback control unit keeps a plurality of reference voltages, wherein each two neighboring reference voltages are defined to have a voltage section therebetween. The feedback control unit sends a current signal to the driving unit according to the working voltage and a slope parameter of the voltage section which the working voltage falls in, and the driving unit supplies the working current according to the current signal to maintain the electric power in the predetermined range of the default power.
Abstract:
In a heat dissipating apparatus for an automotive LED lamp, the automotive LED lamp includes an automotive lamp set, a heat dissipating module, a plurality of LEDs, and a reflecting unit. The heat dissipating module is wrapped to form an insulation circuit for separating heat energy and electric power of the insulation circuit and heat dissipating module. The LED is electrically connected to the insulation circuit, and a main base of the LED installs a metal conducting plate for conducting the heat produced by the LED to the heat dissipating module. The reflecting unit is installed in the automotive lamp set, so that the heat dissipating module can use a cold air or a liquid coolant as the heat dissipating medium for dissipating heat, preventing a drop of light output caused by an overheat, and avoiding damages to the LED to extend the life expectancy of the automotive LED lamp.
Abstract:
A method of controlling multiple lamps is applied to an illumination system, which includes an input interface, a signal transmitter, a plurality of signal receivers, a plurality of driving devices, and a plurality of lamps. The method includes the following steps: detect a state of the input interface with the signal transmitter; transmits a corresponding signal with the signal transmitter; each of the signal receivers receives the signal and detects a waveform of an AC power source, and each of the signal receivers transmits a corresponding control signal to the corresponding driving device to control the corresponding lamp at a reference point in the following cycle of the waveform of the AC power source.
Abstract:
A switch includes a first switching member and a latch circuit. A first terminal of the first switching member is electrically connected to a power source, while a second terminal thereof is electrically connected to a loading. The latch circuit includes a first transistor and a second transistor which are mutually electrically connected. The first transistor is electrically connected to the first terminal, and the second transistor is electrically connected to the control terminal. By inputting a trigger voltage to the second transistor, the second transistor and the first switching member are conducted, which makes the first transistor become conductive. After the first transistor becoming conductive, the first transistor provides electricity to the second transistor to cause latching effect, and to consequently keep the first switching member conductive.
Abstract:
A dimmable LED illumination system includes a LED lamp, a switch, and a driver. The LED lamp receives electric signals to emit light; the switch is connected to a power source, and generates a pulse signal by being turned off and then on again in a predetermined time; the driver connects the switch to the LED lamp to convert electric power of the power source into the electric signals which are supplied to the LED lamp when the switch is turned on. In addition, the driver saves a setting luminance, a default illumination mode, and a luminance adjustment mode. When the driver receives the pulse signal, one of the two modes is selected to light the LED lamp.
Abstract:
An illumination system includes an input interface, a phase angle control module, a lamp, and a driving module. The input interface is controllably switched between a first state and a second state. The phase angle control module is electrically connected to an AC power source and the input interface. When the input interface is at the first state, the phase angle control module modifies a voltage waveform of the AC power source to generate a delayed conduction angle in a half wave period of the voltage waveform. The driving module is stored with a control mode, wherein the driving module switches the control mode to control the lamp to emit light in accordance with the delayed conduction angle.
Abstract:
A driving apparatus for LED chips includes: a driving unit, a voltage measuring unit, and a feedback control module. The driving unit provides a driving voltage and a driving current to a LED chip; the voltage measuring unit measures the driving voltage; the feedback control module is built-in with a default power; According to the driving voltage measured by the voltage measuring unit and the default power, the feedback control module controls the driving unit to maintain the driving current at a working current, wherein the working current matches the rated current of the LED chip. Whereby, the driving apparatus could drive LED chips of different specifications.
Abstract:
A method of driving LED chips, wherein the LED chips have different specifications, includes the steps of: A. defining a plurality of setting currents; B. connecting a LED chip; C. selecting one of the setting currents which matches a rated current of the LED chip; and D. providing power with the selected setting current to the LED chip. Whereby, the method could be applied to drive LED chips of several different specifications.