摘要:
A support structure within an interferometric modulator device may contact various other structures within the device. Increased bond strengths between the support structure and the other structures may be achieved in various ways, such as by providing roughened surfaces and/or adhesive materials at the interfaces between the support structures and the other structures. In an embodiment, increased adhesion is achieved between a support structure and a substrate layer. In another embodiment, increased adhesion is achieved between a support structure and a moveable layer. Increased adhesion may reduce undesirable slippage between the support structures and the other structures to which they are attached within the interferometric modulator.
摘要:
Methods for making MEMS devices such as interferometric modulators involve selectively removing a sacrificial portion of a material to form an internal cavity, leaving behind a remaining portion of the material to form a post structure. The material may be blanket deposited and selectively altered to define sacrificial portions that are selectively removable relative to the remaining portions. Alternatively, a material layer can be laterally recessed away from openings in a covering layer. These methods may be used to make unreleased and released interferometric modulators.
摘要:
A microelectromechanical (MEMS) device includes a functional layer including a first material and a deformable layer including a second material. The second material is different from the first material. The deformable layer is mechanically coupled to the functional layer at a junction. The functional layer and the deformable layer have substantially equal internal stresses at the junction.
摘要:
A method for etching a target material in the presence of a structural material with improved selectivity uses a vapor phase etchant and a co-etchant. Embodiments of the method exhibit improved selectivities of from at least about 2-times to at least about 100-times compared with a similar etching process not using a co-etchant. In some embodiments, the target material comprises a metal etchable by the vapor phase etchant. Embodiments of the method are particularly useful in the manufacture of MEMS devices, for example, interferometric modulators. In some embodiments, the target material comprises a metal etchable by the vapor phase etchant, for example, molybdenum and the structural material comprises a dielectric, for example silicon dioxide.
摘要:
A microelectromechanical (MEMS) device includes a functional layer including a first material and a deformable layer including a second material. The second material is different from the first material. The deformable layer is mechanically coupled to the functional layer at a junction. The functional layer and the deformable layer have substantially equal internal stresses at the junction.
摘要:
A method for etching a target material in the presence of a structural material with improved selectivity uses a vapor phase etchant and a co-etchant. Embodiments of the method exhibit improved selectivities of from at least about 2-times to at least about 100-times compared with a similar etching process not using a co-etchant. In some embodiments, the target material comprises a metal etchable by the vapor phase etchant. Embodiments of the method are particularly useful in the manufacture of MEMS devices, for example, interferometric modulators. In some embodiments, the target material comprises a metal etchable by the vapor phase etchant, for example, molybdenum and the structural material comprises a dielectric, for example silicon dioxide.
摘要:
A microelectromechanical (MEMS) device includes a functional layer including a first material, a deformable layer including a second material different from the first material, and a connecting element including the first material. The connecting element is mechanically coupled to the deformable layer and the functional layer. The connecting element and the deformable layer form an interface between the first material and the second material. The interface is spaced from the functional layer.
摘要:
A microelectromechanical (MEMS) device includes a functional layer including a first material, a deformable layer including a second material different from the first material, and a connecting element including the first material. The connecting element is mechanically coupled to the deformable layer and the functional layer. The connecting element and the deformable layer form an interface between the first material and the second material. The interface is spaced from the functional layer.
摘要:
A support structure within an interferometric modulator device may contact various other structures within the device. Increased bond strengths between the support structure and the other structures may be achieved in various ways, such as by providing roughened surfaces and/or adhesive materials at the interfaces between the support structures and the other structures. In an embodiment, increased adhesion is achieved between a support structure and a substrate layer. In another embodiment, increased adhesion is achieved between a support structure and a moveable layer. Increased adhesion may reduce undesirable slippage between the support structures and the other structures to which they are attached within the interferometric modulator.
摘要:
A spatial light modulator comprises an integrated optical compensation structure, e.g., an optical compensation structure arranged between a substrate and a plurality of individually addressable light-modulating elements, or an optical compensation structure located on the opposite side of the light-modulating elements from the substrate. The individually addressable light-modulating elements are configured to modulate light transmitted through or reflected from the transparent substrate. Methods for making such spatial light modulators involve fabricating an optical compensation structure over a substrate and fabricating a plurality of individually addressable light-modulating elements over the optical compensation structure. The optical compensation structure may be a passive optical compensation structure. The optical compensation structure may include one or more of a supplemental frontlighting source, a diffuser, a black mask, a diffractive optical element, a color filter, an anti-reflective layer, a structure that scatters light, a microlens array, and a holographic film.