摘要:
A support structure within an interferometric modulator device may contact various other structures within the device. Increased bond strengths between the support structure and the other structures may be achieved in various ways, such as by providing roughened surfaces and/or adhesive materials at the interfaces between the support structures and the other structures. In an embodiment, increased adhesion is achieved between a support structure and a substrate layer. In another embodiment, increased adhesion is achieved between a support structure and a moveable layer. Increased adhesion may reduce undesirable slippage between the support structures and the other structures to which they are attached within the interferometric modulator.
摘要:
Methods for making MEMS devices such as interferometric modulators involve selectively removing a sacrificial portion of a material to form an internal cavity, leaving behind a remaining portion of the material to form a post structure. The material may be blanket deposited and selectively altered to define sacrificial portions that are selectively removable relative to the remaining portions. Alternatively, a material layer can be laterally recessed away from openings in a covering layer. These methods may be used to make unreleased and released interferometric modulators.
摘要:
An etching chamber is configured to support a MEMS substrate within the chamber. The etching chamber is configured to be relatively easy to move and attach to an etch station that includes a source of vapor or gaseous etchant, a source of purge gas and/or a vacuum source. The portable etching chamber may facilitate a process for etching the MEMS substrate contained therein. For example, a MEMS substrate in such an etching chamber may be etched by connecting the chamber into an etch station and exposing the MEMS substrate to an etchant in order to etch the MEMS substrate. The substrate can be moved to or from the etch station within the portable etching chamber. In preferred embodiments, the MEMS substrate is an interferometric modulator and the etchant is XeF2.
摘要:
A microelectromechanical (MEMS) device includes a functional layer including a first material and a deformable layer including a second material. The second material is different from the first material. The deformable layer is mechanically coupled to the functional layer at a junction. The functional layer and the deformable layer have substantially equal internal stresses at the junction.
摘要:
A method for etching a target material in the presence of a structural material with improved selectivity uses a vapor phase etchant and a co-etchant. Embodiments of the method exhibit improved selectivities of from at least about 2-times to at least about 100-times compared with a similar etching process not using a co-etchant. In some embodiments, the target material comprises a metal etchable by the vapor phase etchant. Embodiments of the method are particularly useful in the manufacture of MEMS devices, for example, interferometric modulators. In some embodiments, the target material comprises a metal etchable by the vapor phase etchant, for example, molybdenum and the structural material comprises a dielectric, for example silicon dioxide.
摘要:
A microelectromechanical (MEMS) device includes a functional layer including a first material, a deformable layer including a second material different from the first material, and a connecting element including the first material. The connecting element is mechanically coupled to the deformable layer and the functional layer. The connecting element and the deformable layer form an interface between the first material and the second material. The interface is spaced from the functional layer.
摘要:
A microelectromechanical (MEMS) device includes a functional layer including a first material, a deformable layer including a second material different from the first material, and a connecting element including the first material. The connecting element is mechanically coupled to the deformable layer and the functional layer. The connecting element and the deformable layer form an interface between the first material and the second material. The interface is spaced from the functional layer.
摘要:
A method for etching a target material in the presence of a structural material with improved selectivity uses a vapor phase etchant and a co-etchant. Embodiments of the method exhibit improved selectivities of from at least about 2-times to at least about 100-times compared with a similar etching process not using a co-etchant. In some embodiments, the target material comprises a metal etchable by the vapor phase etchant. Embodiments of the method are particularly useful in the manufacture of MEMS devices, for example, interferometric modulators. In some embodiments, the target material comprises a metal etchable by the vapor phase etchant, for example, molybdenum and the structural material comprises a dielectric, for example silicon dioxide.
摘要:
A microelectromechanical (MEMS) device includes a functional layer including a first material and a deformable layer including a second material. The second material is different from the first material. The deformable layer is mechanically coupled to the functional layer at a junction. The functional layer and the deformable layer have substantially equal internal stresses at the junction.
摘要:
A first electrode and a sacrificial layer are sequentially formed on a substrate, and then first openings for forming supports inside are formed in the first electrode and the sacrificial layer. The supports are formed in the first openings, and then a second electrode is formed on the sacrificial layer and the supports, thus forming a micro electro mechanical system structure. Afterward, an adhesive is used to adhere and fix a protection structure to the substrate for forming a chamber to enclose the micro electro mechanical system structure, and at least one second opening is preserved on sidewalls of the chamber. A release etch process is subsequently employed to remove the sacrificial layer through the second opening in order to form cavities in an optical interference reflection structure. Finally, the second opening is closed to seal the optical interference reflection structure between the substrate and the protection structure.