摘要:
A white balance calibration method includes providing red light, green light, blue light, and white light to a display panel according to first image data; detecting a first temperature of a backlight module when the backlight module provides the red light, green light, blue light, and white light to the display panel; detecting whether luminance of white light of each pixel is lower than maximum luminance of a white light emitting diode (LED) corresponding to the pixel when a first difference between the first temperature and a standard temperature stored in a lookup table is less than a predetermined value; controlling the backlight module to turn on a red LED, a green LED, and a blue LED corresponding to the pixel during turning-on of the white light if the luminance of the white light is lower than the maximum luminance of the white LED corresponding to the pixel.
摘要:
A capacitive touch display panel includes a first substrate, a second substrate, an opaque pattern, a plurality of transparent conductive sensor pads, and a plurality of non-transparent conductive patterns. The first substrate and the second substrate are disposed oppositely. The transparent conductive sensor pads are disposed on the second substrate. The non-transparent conductive patterns are disposed on the second substrate, and the non-transparent conductive patterns and the transparent conductive sensor pads are electrically connected and overlapping. The conductivity of the non-transparent conductive patterns is higher than that of the transparent conductive sensor pads, and the non-transparent conductive patterns are corresponding to the opaque pattern.
摘要:
A capacitive touch display panel includes a first substrate, a second substrate, an opaque pattern, a plurality of transparent conductive sensor pads, and a plurality of non-transparent conductive patterns. The first substrate and the second substrate are disposed oppositely. The transparent conductive sensor pads are disposed on the second substrate. The non-transparent conductive patterns are disposed on the second substrate, and the non-transparent conductive patterns and the transparent conductive sensor pads are electrically connected and overlapping. The conductivity of the non-transparent conductive patterns is higher than that of the transparent conductive sensor pads, and the non-transparent conductive patterns are corresponding to the opaque pattern.
摘要:
A manufacturing method of a thin film transistor is provided. An insulating pattern layer having at least one protrusion is formed on a substrate. At least one spacer and a plurality of amorphous semiconductor patterns separated from each other are formed on the insulating pattern layer. The spacer is formed at one side of the protrusion and connected between the amorphous semiconductor patterns. The spacer and the amorphous semiconductor patterns are crystallized. The protrusion and the insulating pattern layer below the spacer are removed so that a beam structure having a plurality of corners is formed and suspended over the substrate. A carrier tunneling layer, a carrier trapping layer and a carrier blocking layer are sequentially formed to compliantly wrap the corners of the beam structure. Hereafter, a gate is formed on the substrate to cover the beam structure and wrap the carrier blocking layer.
摘要:
A manufacturing method of a thin film transistor is provided. An insulating pattern layer having at least one protrusion is formed on a substrate. At least one spacer and a plurality of amorphous semiconductor patterns separated from each other are formed on the insulating pattern layer. The spacer is formed at one side of the protrusion and connected between the amorphous semiconductor patterns. The spacer and the amorphous semiconductor patterns are crystallized. The protrusion and the insulating pattern layer below the spacer are removed so that a beam structure having a plurality of corners is formed and suspended over the substrate. A carrier tunneling layer, a carrier trapping layer and a carrier blocking layer are sequentially formed to compliantly wrap the corners of the beam structure. Hereafter, a gate is formed on the substrate to cover the beam structure and wrap the carrier blocking layer.
摘要:
A liquid crystal display device includes a plurality of gate lines, a plurality of data lines, a pixel array, a gate driver, a timing controller, and an optimization circuit. Each pixel unit in the pixel array displays images according to the gate driving signal received from a corresponding gate line and the data driving signal received from a corresponding data line. According to an optimized reference value, the timing controller provides an output enable signal, based on which the gate driver outputs the gate driving signals. The optimization circuit receives a first grayscale data related to display images of a row of pixel units in a first driving period and a second grayscale data related to display images of the row of pixel units in a second driving period, and provides the optimized reference value according the difference between the first and second grayscale data.
摘要:
A thin film transistor and a manufacturing method thereof are provided. An insulating pattern layer having at least one protrusion is formed on a substrate. Afterwards, at least one spacer and a plurality of amorphous semiconductor patterns separated from each other are formed on the insulating pattern layer. The spacer is formed at one side of the protrusion and connected between the amorphous semiconductor patterns. Later, the spacer and the amorphous semiconductor patterns are crystallized. Subsequently, the protrusion and the insulating pattern layer below the spacer are removed so that a beam structure having a plurality of corners is formed and suspended over the substrate. Then, a carrier tunneling layer, a carrier trapping layer and a carrier blocking layer are sequentially formed to compliantly wrap the corners of the beam structure. Hereafter, a gate is formed on the substrate to cover the beam structure and wrap the carrier blocking layer.
摘要:
A method of adjusting the brightness of a display device is provided. The method includes providing a plurality of saturated level-adjust voltages to various level adjustments of the display device when the central brightness is saturated. Then, a computation of the saturated level-adjust voltage of each level adjustment is carried out to obtain a display voltage of each level adjustment. Thereafter, a computation of the saturated level-adjust voltage, a common voltage and the display voltage of each level adjustment is carried out to obtain a feed-through voltage for each level adjustment. After that, a computation of the feed-through voltage and the saturated level-adjust voltage of each level adjustment is carried out to obtain a liquid crystal capacitance value for each level adjustment. Finally, a simulation of the liquid crystal capacitance value of each level adjustment is carried out to obtain an optimized level-adjust voltage for each level adjustment.
摘要:
A display apparatus and a display panel. The display panel includes a first scanning line, a plurality of second scanning lines, a plurality of first pixels and a plurality of second pixels. The first scanning line receives a first scanning signal. The second scanning lines receive a second scanning signal, where the second scanning signal is different from the first scanning signal. The first pixels are coupled to the corresponding second and first scanning lines. The second pixels are coupled to the two corresponding second scanning lines respectively. By adjusting a capacitance of a capacitor, a voltage level of the second scanning signal, or a line impedance of the second scanning line, a pixel voltage difference of the first pixel equals to a pixel voltage difference of the second pixel.
摘要:
An LCD panel includes a plurality of signal lines, a plurality of display units, a driving circuit and a test unit. Each display unit is coupled to a corresponding signal line of the plurality of signal lines. The driving circuit is coupled to corresponding signals lines via a plurality of output ends. The test unit includes a shorting bar, a test pad, and a plurality of switches. Each switch is coupled between a corresponding signal line of the plurality of signal lines and the shorting bar.