摘要:
Large-scale trimming for forming ultra-narrow gates for semiconductor devices is disclosed. A hard mask layer on a semiconductor wafer below a patterned soft mask layer on the semiconductor wafer is etched to narrow a width of the hard mask layer. The hard mask layer is trimmed to further narrow the width of the hard mask layer, where the soft mask layer has been removed. At least a gate electrode layer below the hard mask layer on the semiconductor wafer is etched, resulting in the gate electrode layer having a width substantially identical to the width of the hard mask layer as trimmed. The gate electrode layer as etched forms the ultra-narrow gate electrode on the semiconductor wafer, where the hard mask layer has been removed.
摘要:
Large-scale trimming for forming ultra-narrow gates for semiconductor devices is disclosed. A hard mask layer on a semiconductor wafer below a patterned soft mask layer on the semiconductor wafer is etched to narrow a width of the hard mask layer. The hard mask layer is trimmed to further narrow the width of the hard mask layer, where the soft mask layer has been removed. At least a gate electrode layer below the hard mask layer on the semiconductor wafer is etched, resulting in the gate electrode layer having a width substantially identical to the width of the hard mask layer as trimmed. The gate electrode layer as etched forms the ultra-narrow gate electrode on the semiconductor wafer, where the hard mask layer has been removed.
摘要:
Large-scale trimming for forming ultra-narrow gates for semiconductor devices is disclosed. A hard mask layer on a semiconductor wafer below a patterned soft mask layer on the semiconductor wafer is etched to narrow a width of the hard mask layer. The hard mask layer is trimmed to further narrow the width of the hard mask layer, where the soft mask layer has been removed. At least a gate electrode layer below the hard mask layer on the semiconductor wafer is etched, resulting in the gate electrode layer having a width substantially identical to the width of the hard mask layer as trimmed. The gate electrode layer as etched forms the ultra-narrow gate electrode on the semiconductor wafer, where the hard mask layer has been removed.
摘要:
A method for using an isotropic wet etching process chemical process for trimming semiconductor feature sizes with improved critical dimension control including providing a hard mask overlying a substrate included in a semiconductor wafer said hard mask patterned for masking a portion of the substrate for forming a semiconductor feature according to an anisotropic plasma etching process; isotropically wet etching the hard mask to reduce a dimension of the hard mask prior to carrying out the anisotropic plasma etching process; and, anisotropically plasma etching a portion of the substrate not covered by the hard mask to form the semiconductor feature.
摘要:
A process for forming a DRAM stacked capacitor structure with increased surface area, has been developed. The process features forming lateral grooves in the sides of a polysilicon storage node structure, during a dry etching procedure used to define the storage node structure. The grooves are selectively, and laterally formed in ion implanted veins, which in turn had been placed at various depths in an intrinsic polysilicon layer via a series of ion implantation steps, each performed at a specific implant energy. An isotopic component of the storage node structure, defining dry etch procedure, selectively etches the highly doped, ion implanted veins at a greater rate than the non-ion implanted regions of polysificon, located between the ion implanted veins, resulting in a necked profile, storage node structure, featuring increased surface area as a result of the formation of the lateral grooves.
摘要:
The invention is a process for reducing variations in CD from wafer to wafer. It begins by increasing all line widths in the original pattern data file by a fixed amount that is sufficient to ensure that all lines will be wider than the lowest acceptable CD value. Using a reticle generated from this modified data file, the pattern is formed in photoresist and the resulting CD value is determined. If this turns out be outside (above) the acceptable CD range, the amount of deviation from the ideal CD value is determined and fed into suitable software that calculates the control parameters (usually time) for an ashing routine. After ashing, the lines will have been reduced in width by the amount necessary to obtain the correct CD. A fringe benefit of this trimming process is that edge roughness of the photoresist lines is reduced and line feet are removed.
摘要:
Semiconductor devices with dual-metal gate structures and fabrication methods thereof. A semiconductor substrate with a first doped region and a second doped region separated by an insulation layer is provided. A first metal gate stack is formed on the first doped region, and a second metal gate stack is formed on the second doped region. A sealing layer is disposed on sidewalls of the first gate stack and the second gate stack. The first metal gate stack comprises an interfacial layer, a high-k dielectric layer on the interfacial layer, a first metal layer on the high-k dielectric layer, a metal insertion layer on the first metal layer, a second metal layer on the metal insertion layer, and a polysilicon layer on the second metal layer. The second metal gate stack comprises an interfacial layer, a high-k dielectric layer on the interfacial layer, a second metal layer on the high-k dielectric layer, and a polysilicon layer on the second metal layer.
摘要:
Semiconductor devices with dual-metal gate structures and fabrication methods thereof. A semiconductor substrate with a first doped region and a second doped region separated by an insulation layer is provided. A first metal gate stack is formed on the first doped region, and a second metal gate stack is formed on the second doped region. A sealing layer is disposed on sidewalls of the first gate stack and the second gate stack. The first metal gate stack comprises an interfacial layer, a high-k dielectric layer on the interfacial layer, a first metal layer on the high-k dielectric layer, a metal insertion layer on the first metal layer, a second metal layer on the metal insertion layer, and a polysilicon layer on the second metal layer. The second metal gate stack comprises an interfacial layer, a high-k dielectric layer on the interfacial layer, a second metal layer on the high-k dielectric layer, and a polysilicon layer on the second metal layer.
摘要:
Semiconductor devices with dual-metal gate structures and fabrication methods thereof. A semiconductor substrate with a first doped region and a second doped region separated by an insulation layer is provided. A first metal gate stack is formed on the first doped region, and a second metal gate stack is formed on the second doped region. A sealing layer is disposed on sidewalls of the first gate stack and the second gate stack. The first metal gate stack comprises an interfacial layer, a high-k dielectric layer on the interfacial layer, a first metal layer on the high-k dielectric layer, a metal insertion layer on the first metal layer, a second metal layer on the metal insertion layer, and a polysilicon layer on the second metal layer. The second metal gate stack comprises an interfacial layer, a high-k dielectric layer on the interfacial layer, a second metal layer on the high-k dielectric layer, and a polysilicon layer on the second metal layer.
摘要:
A process for forming a DRAM stacked capacitor structure with increased surface area, has been developed. The process features forming lateral grooves in the sides of a polysilicon storage node structure, during a dry etching procedure used to define the storage node structure. The grooves are selectively, and laterally formed in ion implanted veins, which in turn had been placed at various depths in an intrinsic polysilicon layer via a series of ion implantation steps, each performed at a specific implant energy. An isotopic component of the storage node structure, defining dry etch procedure, selectively etches the highly doped, ion implanted veins at a greater rate than the non-ion implanted regions of polysilicon, located between the ion implanted veins, resulting in a necked profile, storage node structure, featuring increase surface area as a result of the formation of the lateral grooves.