摘要:
A method of forming a dielectric between memory cells in a device includes forming multiple memory cells, where a gap is formed between each of the multiple memory cells. The method further includes performing a high density plasma deposition (HDP) process to fill at least a portion of the gap between each of the multiple memory cells with a dielectric material.
摘要:
A method for performing a bit line implant is disclosed. The method includes forming a group of structures on an oxide-nitride-oxide stack of a semiconductor device. Each structure of the group of structures includes a polysilicon portion and a hard mask portion. A first structure of the group of structures is separated from a second structure of the group of structures by less than 100 nanometers. The method further includes using the first structure and the second structure to isolate a portion of the semiconductor device for the bit line implant.
摘要:
A method for performing a bit line implant is disclosed. The method includes forming a group of structures on an oxide-nitride-oxide stack of a semiconductor device. Each structure of the group of structures includes a polysilicon portion and a hard mask portion. A first structure of the group of structures is separated from a second structure of the group of structures by less than 100 nanometers. The method further includes using the first structure and the second structure to isolate a portion of the semiconductor device for the bit line implant.
摘要:
A method for contact hole formation and inspection during integrated circuit fabrication is disclosed. The method includes defining tolerances for one or more contact hole formation processes, and then performing the formation processes to create at least one contact hole. After at least one of the formation processes is performed, a waveform is generated for the contact hole. A critical dimension (CD) and an edge width value are then generated for the contact hole from the waveform. The CD and the edge width value are then compared to the tolerances to detect and correct variations in the formation process. In a further aspect of the present invention, the edge width is compared to a predetermined limit to automatically detect contact holes having sloped sidewalls.
摘要:
A semiconductor fabrication system and method are presented. A three dimensional multilayer integrated circuit fabrication method can include forming a first device layer and forming a second device layer on top of the first device layer with minimal detrimental heat transfer to the first layer by utilizing a controlled laser layer formation annealing process. A controlled laser crystallization process can be utilized and the controlled laser can include creating an amorphous layer; defining a crystallization area in the amorphous layer, where in the crystallization area is defined to promote single crystal growth (i.e. prevent multi-crystalline growth); and applying laser to the crystallization area, wherein the laser is applied in a manner that prevents undesired heat transfer to another layer.
摘要:
A method for forming a semiconductor device may include forming a silicon oxynitride mask layer over a first layer. The first layer may be etched using the silicon oxynitride mask layer, to form a pattern in the first layer. The pattern may be filled with a dielectric material. The dielectric material may be planarized using a ceria-based slurry and using the silicon oxynitride mask layer as a stop layer.
摘要:
A load circuit for compensating for source side loading effects in a non-volatile memory. Specifically, embodiments of the present invention describe a reference cell that is coupled to a plurality of load circuits. At least one of the plurality of load circuits, an mth load circuit, comprises a select transistor coupled to m resistors that are coupled in series. The mth load circuit matches a source side loading effect of a corresponding mth memory cell located m memory cells away from a source line node on a source line coupling source regions in memory cells of a row of memory cells.