摘要:
Embodiments of the invention may provide for a CMOS antenna switch, which may be referred to as a CMOS SP4T switch. The CMOS antenna switch may operate at a plurality of frequencies, perhaps around 900 MHz and 1.9 GHz according to an embodiment of the invention. The CMOS antenna switch may include both a receiver switch and a transmit switch. The receiver switch may utilize a multi-stack transistor with body substrate tuning to block high power signals from the transmit path as well as to maintain low insertion loss at the receiver path. On the other hand, in the transmit switch, a body substrate tuning technique may be applied to maintain high power delivery to the antenna. Example embodiments of the CMOS antenna switch may provide for 31 dBm P 1 dB at both bands (e.g., 900 MHz and 1.8 GHz). In addition, a 0.9 dB and −1.1 dB insertion loss at 900 MHz and 1.9 GHz, respectively, may be obtained according to example embodiments of the invention.
摘要:
Embodiments of the invention may provide for a CMOS antenna switch, which may be referred to as a CMOS SP4T switch. The CMOS antenna switch may operate at a plurality of frequencies, perhaps around 900 MHz and 1.9 GHz according to an embodiment of the invention. The CMOS antenna switch may include both a receiver switch and a transmit switch. The receiver switch may utilize a multi-stack transistor with body substrate tuning to block high power signals from the transmit path as well as to maintain low insertion loss at the receiver path. On the other hand, in the transmit switch, a body substrate tuning technique may be applied to maintain high power delivery to the antenna. Example embodiments of the CMOS antenna switch may provide for 31 dBm P 1 dB at both bands (e.g., 900 MHz and 1.8 GHz). In addition, a 0.9 dB and −1.1 dB insertion loss at 900 MHz and 1.9 GHz, respectively, may be obtained according to example embodiments of the invention.
摘要:
Embodiments of the invention may provide for a CMOS antenna switch, which may be referred to as a CMOS SPDT switch. The CMOS antenna switch may operate at a plurality of frequencies, perhaps around 900 MHz, 1.9 GHz and 2.1 GHz according to an embodiment of the invention. The CMOS antenna switch may include both a receiver switch and a transmit switch. The receiver switch may utilize a multi-stack transistor with body substrate switching and attachment of external capacitor between drain and gate to block high power signals from the transmit path as well as to maintain low insertion loss at the receiver path. Exemplary embodiments of the CMOS antenna switch may provide for 38 dBm P 0.1 dB at multi bands (e.g., 900 MHz, 1.8 GHz, and 2.1 GHz). In addition, −60 dBc second and third harmonic performance up to 30 dBm input, may be obtained according to example embodiments of the invention.
摘要翻译:本发明的实施例可以提供可被称为CMOS SPDT开关的CMOS天线开关。 根据本发明的实施例,CMOS天线开关可以以多个频率操作,可能约为900MHz,1.9GHz和2.1GHz。 CMOS天线开关可以包括接收器开关和发送开关。 接收器开关可以利用具有主体衬底切换的多层晶体管,并且在漏极和栅极之间附接外部电容器以阻挡来自发射路径的高功率信号以及在接收器路径处保持较低的插入损耗。 CMOS天线开关的示例性实施例可以在多频带(例如,900MHz,1.8GHz和2.1GHz)处提供38dBm P 0.1dB。 此外,根据本发明的示例性实施例,可以获得高达30dBm输入的-60dBc的二次和三次谐波性能。
摘要:
Embodiments of the invention may provide for a CMOS antenna switch, which may be referred to as a CMOS SPDT switch. The CMOS antenna switch may operate at a plurality of frequencies, perhaps around 900 MHz 1.9 GHz and 2.1 GHz according to an embodiment of the invention. The CMOS antenna switch may include both a receiver switch and a transmit switch. The receiver switch may utilize a multi-stack transistor with body substrate switching and source and body connection along with body floating technique to block high power signals from the transmit path by preventing channel formation of the device in OFF state as well as to maintain low insertion loss at the receiver path. Example embodiments of the CMOS antenna switch may provide for 35 dBm P 1 dB at both bands (e.g., 900 MHz and 1.9 GHz and 2.1 GHz). In addition, a −60 dBc second and third harmonic up to 28 dBm input power to the switch, may be obtained according to example embodiments of the invention.
摘要:
Systems and methods may be provided for a CMOS RF antenna switch. The systems and methods for the CMOS RF antenna switch may include an antenna that is operative to transmit and receive signals over at least one radio frequency (RF) band, and a transmit switch coupled to the antenna, where the transmit switch is enabled to transmit a respective first signal to the antenna and disabled to prevent transmission of the first signal to the antenna. the systems and methods for the CMOS RF antenna switch may further include a receiver switch coupled to the antenna, where the receiver switch forms a filter when enabled and a resonant circuit when disabled, where the filter provides for reception of a second signal received by the antenna, and where the resonant circuit blocks reception of at least the first signal.
摘要:
Embodiments of the invention may provide for a CMOS antenna switch, which may be referred to as a CMOS SPDT switch. The CMOS antenna switch may operate at a plurality of frequencies, perhaps around 900 MHz 1.9 GHz and 2.1 GHz according to an embodiment of the invention. The CMOS antenna switch may include both a receiver switch and a transmit switch. The receiver switch may utilize a multi-stack transistor with body substrate switching and source and body connection along with body floating technique to block high power signals from the transmit path by preventing channel formation of the device in OFF state as well as to maintain low insertion loss at the receiver path. Example embodiments of the CMOS antenna switch may provide for 35 dBm P 1 dB at both bands (e.g., 900 MHz and 1.9 GHz and 2.1 GHz). In addition, a −60 dBc second and third harmonic up to 28 dBm input power to the switch, may be obtained according to example embodiments of the invention.
摘要:
Embodiments of the invention may provide for a load regulation tuner that reduces the load regulation effect. The load regulation tuner may include a load current controlled current source that is responsive to a load current from a power transistor of a linear regulator, where the load current controlled current source includes a sensing transistor that generates a fraction of the load current as a sensed partial load current. The load regulation tuner may also include a resistor in parallel with a load current controlled current source, and where the paralleled resistor and the load current controlled current source form at least a portion of a feedback block that adjusts an operation of the linear regulator to provide a substantially constant load voltage.
摘要:
Embodiments of the invention may provide for a load regulation tuner that reduces the load regulation effect. The load regulation tuner may include a load current controlled current source that is responsive to a load current from a power transistor of a linear regulator, where the load current controlled current source includes a sensing transistor that generates a fraction of the load current as a sensed partial load current. The load regulation tuner may also include a resistor in parallel with a load current controlled current source, and where the paralleled resistor and the load current controlled current source form at least a portion of a feedback block that adjusts an operation of the linear regulator to provide a substantially constant load voltage.
摘要:
Systems and methods may be provided for a CMOS RF antenna switch. The systems and methods for the CMOS RF antenna switch may include an antenna that is operative to transmit and receive signals over at least one radio frequency (RF) band, and a transmit switch coupled to the antenna, where the transmit switch is enabled to transmit a respective first signal to the antenna and disabled to prevent transmission of the first signal to the antenna the systems and methods for the CMOS RF antenna switch may further include a receiver switch coupled to the antenna, where the receiver switch forms a filter when enabled and a resonant circuit when disabled, where the filter provides for reception of a second signal received by the antenna, and where the resonant circuit blocks reception of at least the first signal.
摘要:
Embodiments of the invention may provide for a CMOS antenna switch, which may be referred to as a CMOS SPDT switch. The CMOS antenna switch may operate at a plurality of frequencies, perhaps around 900 MHz, 1.9 GHz and 2.1 GHz according to an embodiment of the invention. The CMOS antenna switch may include both a receiver switch and a transmit switch. The receiver switch may utilize a multi-stack transistor with body substrate switching and attachment of external capacitor between drain and gate to block high power signals from the transmit path as well as to maintain low insertion loss at the receiver path. Exemplary embodiments of the CMOS antenna switch may provide for 38 dBm P 0.1 dB at multi bands (e.g., 900 MHz, 1.8 GHz, and 2.1 GHz). In addition, −60 dBc second and third harmonic performance up to 30 dBm input, may be obtained according to example embodiments of the invention.
摘要翻译:本发明的实施例可以提供可被称为CMOS SPDT开关的CMOS天线开关。 根据本发明的实施例,CMOS天线开关可以以多个频率操作,可能约为900MHz,1.9GHz和2.1GHz。 CMOS天线开关可以包括接收器开关和发送开关。 接收器开关可以利用具有主体衬底切换的多层晶体管,并且在漏极和栅极之间附接外部电容器以阻挡来自发射路径的高功率信号以及在接收器路径处保持较低的插入损耗。 CMOS天线开关的示例性实施例可以在多频带(例如,900MHz,1.8GHz和2.1GHz)处提供38dBm P 0.1dB。 此外,根据本发明的示例性实施例,可以获得高达30dBm输入的-60dBc的二次和三次谐波性能。