Reforming module for converting hydrocarbon-containing fuel gases to hydrogen-containing process gases
    1.
    发明申请
    Reforming module for converting hydrocarbon-containing fuel gases to hydrogen-containing process gases 审中-公开
    用于将含烃燃料气体转化为含氢工艺气体的重整模块

    公开(公告)号:US20050204626A1

    公开(公告)日:2005-09-22

    申请号:US10937259

    申请日:2004-09-10

    摘要: The invention relates to a reforming module for converting hydrocarbon-containing fuel gases to hydrogen-containing process gases, wherein the catalytic reaction occurs on the surface of a plate catalyst, said module constructed such that the hydrocarbon-containing fuel gas before entering the catalyst chamber flows through a tubular heat exchanger by means of which the hydrocarbon-containing fuel gas is preheated through utilization of the heat content of the reformed process gas and that the catalyst-bearing plates are designed in the form of heat exchangers, through which flow the cathode waste gas and the waste gases from a catalytic combustion chamber, in which the residual amounts of hydrogen, carbon dioxide, and carbon monoxide, present in the process gas, are combusted catalytically after the electrochemical process. In particular, the reforming module of the invention is distinguished in that it has a bypass inlet to an upstream tubular heat exchanger, through which cold hydrocarbon-containing fuel gas can be passed into the catalyst chamber. This offers the advantage of optimal process control of the catalytic reforming process without affecting the total volumetric flow.

    摘要翻译: 本发明涉及一种用于将含烃燃料气体转化为含氢处理气体的重整模块,其中催化反应发生在板式催化剂的表面上,所述模块构造成使得含烃燃料气体在进入催化剂室 流过管式热交换器,通过该管式热交换器通过利用重整过程气体的热含量预热含烃燃料气体,并且催化剂承载板被设计为热交换器的形式,阴极 催化燃烧室中的废气和来自工艺气体中存在的氢,二氧化碳和一氧化碳残留量的废气在电化学过程之后催化燃烧。 特别地,本发明的重整模块的特征在于,其具有到上游管式热交换器的旁路入口,通过该上游管式热交换器可以将含冷烃的燃料气体通入催化剂室。 这提供了催化重整过程的最佳过程控制的优点,而不影响总体积流量。

    Method for the backflushing of filters
    2.
    发明授权
    Method for the backflushing of filters 有权
    过滤器反冲洗方法

    公开(公告)号:US08349057B2

    公开(公告)日:2013-01-08

    申请号:US12128563

    申请日:2008-05-28

    IPC分类号: B01D46/04

    CPC分类号: B01D46/04 B01D46/0068

    摘要: Air filters comprising thin-walled textile filter bodies have to be cleaned periodically. According to a method known to this purpose, the filtered material is loosened using pressure pulses in a flushing air flow. According to the invention, for generating the pressure pulses a plurality of small, quick-acting valves are in each case briefly opened, the opening moments being adapted to one another in such a way that partial pulses released thereby arrive simultaneously at the inlet of a flushing line common thereto.

    摘要翻译: 必须定期清洁包含薄壁织物过滤器主体的空气过滤器。 根据已知的方法,使用冲洗空气流中的压力脉冲来松开过滤材料。 根据本发明,为了产生压力脉冲,在每种情况下,多个小的快速作用的阀短暂地打开,打开力矩彼此适配,使得释放的部分脉冲同时到达一个 与其通用的冲洗线。

    Exhaust gas guide of a gas turbine and method for mixing the exhaust gas of the gas turbine
    3.
    发明申请
    Exhaust gas guide of a gas turbine and method for mixing the exhaust gas of the gas turbine 有权
    燃气轮机的废气引导器和用于混合燃气轮机废气的方法

    公开(公告)号:US20070044475A1

    公开(公告)日:2007-03-01

    申请号:US11508167

    申请日:2006-08-23

    IPC分类号: F02C6/18

    摘要: The present invention relates to an exhaust gas guide of a gas turbine, which is situated between the gas turbine and a downstream waste heat boiler or a downstream gas diverter and which comprises a flow channel which has a cross-section expanding in at least some areas in the main flow direction, having installed surfaces influencing the flow. In order to achieve a more compact implementation of the exhaust gas guide and simultaneously avoid or reduce pressure losses, the installed surfaces are implemented as a swirl device generating a leading edge swirl, which is situated in the diverging area of the flow channel and is implemented to distribute the exhaust gas flow uniformly over the flow cross-sectional area upon entry into the waste heat boiler or the gas diverter. Furthermore, the present invention relates to a method for mixing the exhaust gas of a gas turbine with hot exhaust gas streams generated in an auxiliary firing of at least one burner. This thorough mixing is achieved by generating at least one leading edge swirl system in the flow channel.

    摘要翻译: 本发明涉及一种位于燃气轮机和下游废热锅炉或下游气体分流器之间的燃气轮机的排气导管,其包括在至少一些区域中具有横截面扩展的流动通道 在主流动方向,具有影响流动的安装表面。 为了实现排气导管的更紧凑的实现并且同时避免或减少压力损失,安装的表面被实施为产生位于流动通道的发散区域中的前缘涡流的旋流装置,并被实施 以便在进入废热锅炉或气体转向器时将废气流均匀地分布在流动横截面积上。 此外,本发明涉及一种用于将燃气轮机的废气与在至少一个燃烧器的辅助燃烧中产生的热废气流混合的方法。 通过在流动通道中产生至少一个前缘涡流系统来实现这种彻底的混合。

    Device and procedure for hydraulic expansion

    公开(公告)号:US20060000291A1

    公开(公告)日:2006-01-05

    申请号:US11142343

    申请日:2005-06-02

    IPC分类号: G01N3/08

    CPC分类号: B21D39/20

    摘要: The invention concerns a hydraulic expansion process for tubes. With this process it is possible to increase the number of hydraulic tube expansions that can be implemented using an expansion device. The hydraulic expansion process in accordance with the invention is highly optimized with regard to control times, pressures and flows. In this process, pressure is produced in the pressure medium with hydraulic oil via a medium separator and a pressure intensifier. In addition, the invention specifies a device for implementing the expansion process and a process for determining the maximum number of hydraulic tube expansions that can be performed with a probe. Finally, the maximum number of expansions is determined taking into account the deformations of the expanded tubes.

    Device and procedure for hydraulic expansion
    6.
    发明授权
    Device and procedure for hydraulic expansion 失效
    液压膨胀装置及程序

    公开(公告)号:US07021150B2

    公开(公告)日:2006-04-04

    申请号:US11142343

    申请日:2005-06-02

    IPC分类号: G01L7/02 G01L7/10

    CPC分类号: B21D39/20

    摘要: The invention concerns a hydraulic expansion process for tubes. With this process it is possible to increase the number of hydraulic tube expansions that can be implemented using an expansion device. The hydraulic expansion process in accordance with the invention is highly optimized with regard to control times, pressures and flows. In this process, pressure is produced in the pressure medium with hydraulic oil via a medium separator and a pressure intensifier. In addition, the invention specifies a device for implementing the expansion process and a process for determining the maximum number of hydraulic tube expansions that can be performed with a probe. Finally, the maximum number of expansions is determined taking into account the deformations of the expanded tubes.

    摘要翻译: 本发明涉及用于管子的液压膨胀方法。 通过该过程,可以增加可以使用膨胀装置实现的液压管膨胀的数量。 关于控制时间,压力和流量,根据本发明的液压膨胀方法被高度优化。 在该过程中,通过介质分离器和增压器在具有液压油的压力介质中产生压力。 此外,本发明还规定了用于实现膨胀过程的装置和用于确定可以用探针执行的液压管膨胀的最大数目的过程。 最后,考虑膨胀管的变形来确定最大膨胀数。

    Heat exchanger for industrial installations
    7.
    发明申请
    Heat exchanger for industrial installations 有权
    工业设备换热器

    公开(公告)号:US20050178534A1

    公开(公告)日:2005-08-18

    申请号:US11030325

    申请日:2005-01-07

    CPC分类号: F28F13/003 Y10S165/907

    摘要: The invention concerns a heat exchanger for industrial installations, in particular for power plants, with at least one distributor for a fluid medium and at least one heat exchanger element attached to the distributor. The heat exchanger is composed of a sandwich-like configuration of distributors and heat exchanger elements consisting of metal sponges. The distributors are constructed as pipes or at least as semi-pipes connected with each other. Adjacent pipes or semi-pipes are connected with each other through the metal sponge. The sandwich profile of the invention may easily be manufactured in the required dimensions for industrial installations. Herein, particularly the low weight of such a heat exchanger module and the connection between shell and metal sponge, which may simply be made by means of soldering or welding, proves to be particularly advantageous. The metal foam may also be cast onto the shells. The metal sponge should preferably consist of open-pored metal foam and in particular aluminum foam.

    摘要翻译: 本发明涉及用于工业设备,特别是用于发电厂的热交换器,其具有用于流体介质的至少一个分配器和附接到分配器的至少一个热交换器元件。 热交换器由分配器和由金属海绵组成的换热器元件的夹心构造构成。 分销商构造为管道或至少作为彼此连接的半管道。 相邻的管道或半管道通过金属海绵相互连接。 本发明的夹层型材可以容易地制造成工业设备所需的尺寸。 这里,特别地,这种热交换器模块的重量轻以及可以简单地通过焊接或焊接来制造的壳和金属海绵之间的连接被证明是特别有利的。 金属泡沫也可以浇铸到壳上。 金属海绵应优选由开孔金属泡沫,特别是铝泡沫构成。

    Method for manufacturing heat exchanger elements
    8.
    发明授权
    Method for manufacturing heat exchanger elements 失效
    制造热交换元件的方法

    公开(公告)号:US5440807A

    公开(公告)日:1995-08-15

    申请号:US238665

    申请日:1994-04-22

    摘要: The method for manufacturing heat exchanger elements includes the steps of forming an open tubular base body having a longitudinal extension having a width that is substantially greater than the height thereby defining narrow and wide sides of the tubular base body. In the longitudinal extension of the tubular base body a longitudinal opening with longitudinal edges remains. Two strips of sheet metal are removed from a supply roll and corrugated to form corrugated sheet metal strips. The open tubular base body and the corrugated sheet metal strips are advance continuously and parallel to one another in the direction of the longitudinal extension through a fastening device such that the wide sides face the corrugated sheet metal strips. The corrugated sheet metal strips are pressed onto the wide sides and then fastened to the wide sides at some locations of contact between the wide sides and the of corrugated sheet metal strips. Subsequently, the longitudinal edges of the opening are joined to close the opening and form a closed tubular structure. During fastening of the corrugated sheet metal strips onto the wide sides, the wide sides of the open tubular base body are supported from the interior by a support structure.

    摘要翻译: 用于制造热交换器元件的方法包括以下步骤:形成具有纵向延伸部的开口管状基体,该纵向延伸部的宽度基本上大于高度,从而限定管状基体的窄而宽的侧面。 在管状基体的纵向延伸部分中,保持纵向边缘的纵向开口。 从供应辊中取出两条金属片,并将其波纹形成波纹状金属条。 开放的管状基体和波纹状金属带通过紧固装置在纵向延伸的方向上连续前进并且彼此平行,使得宽边面对波纹状金属条。 波纹板金属条被压在宽边上,然后在宽边和波纹金属条之间的某些接触位置处紧固到宽边。 随后,开口的纵向边缘连接以封闭开口并形成封闭的管状结构。 在将波纹板状金属带紧固到宽侧面时,开口管状基体的宽边通过支撑结构从内部支撑。

    Filter device
    9.
    发明申请
    Filter device 审中-公开
    过滤装置

    公开(公告)号:US20080072759A1

    公开(公告)日:2008-03-27

    申请号:US11527717

    申请日:2006-09-27

    IPC分类号: B03C3/76 B03C3/78

    摘要: The present invention relates to a filter device for separating particles from a gaseous fluid sucked in by a gas turbine, the filter device having a vertically situated tubular electric filter. Maintenance work on a gas turbine may thus be significantly reduced and, in addition, a higher gas turbine output may be achieved due to low pressure loss of the tubular electric filter.

    摘要翻译: 本发明涉及一种用于从由燃气轮机吸入的气态流体分离颗粒的过滤装置,该过滤装置具有垂直定位的管状电过滤器。 因此,能够显着降低燃气轮机上的维护工作,另外由于管式电动过滤器的低压力损失,可以实现更高的燃气轮机输出。

    Heat exchanger for industrial installations
    10.
    发明授权
    Heat exchanger for industrial installations 有权
    工业设备换热器

    公开(公告)号:US07086457B2

    公开(公告)日:2006-08-08

    申请号:US11030325

    申请日:2005-01-07

    IPC分类号: F28D1/03

    CPC分类号: F28F13/003 Y10S165/907

    摘要: The invention concerns a heat exchanger for industrial installations, in particular for power plants, with at least one distributor for a fluid medium and at least one heat exchanger element attached to the distributor. The heat exchanger is composed of a sandwich-like configuration of distributors and heat exchanger elements consisting of metal sponges. The distributors are constructed as pipes or at least as semi-pipes connected with each other. Adjacent pipes or semi-pipes are connected with each other through the metal sponge. The sandwich profile of the invention may easily be manufactured in the required dimensions for industrial installations. Herein, particularly the low weight of such a heat exchanger module and the connection between shell and metal sponge, which may simply be made by means of soldering or welding, proves to be particularly advantageous. The metal foam may also be cast onto the shells. The metal sponge should preferably consist of open-pored metal foam and in particular aluminum foam.

    摘要翻译: 本发明涉及用于工业设备,特别是用于发电厂的热交换器,其具有用于流体介质的至少一个分配器和附接到分配器的至少一个热交换器元件。 热交换器由分配器和由金属海绵组成的换热器元件的夹心构造构成。 分销商构造为管道或至少作为彼此连接的半管道。 相邻的管道或半管道通过金属海绵相互连接。 本发明的夹层型材可以容易地制造成工业设备所需的尺寸。 这里,特别地,这种热交换器模块的重量轻以及可以简单地通过焊接或焊接来制造的壳和金属海绵之间的连接被证明是特别有利的。 金属泡沫也可以浇铸到壳上。 金属海绵应优选由开孔金属泡沫,特别是铝泡沫构成。