摘要:
An improved fetal pulse oximeter sensor. The friction provided on the sensor head surface to engage the fetus is higher than the friction on the back side of the sensor head. Thus, any contact with a maternal surface by the back side of the sensor head is less likely to dislodge the sensor, since the maternal tissues will slide over the sensor head. The portion of the sensor surface in contact with the fetus' head will not move because of the increased friction. The increased friction can be achieved by using two different materials with different coefficients of friction, or by using a smooth surface on the back of the sensor head, and a rough surface on the sensor face.
摘要:
A fetal pulse oximeter sensor in which a sensor head is held against the fetus by the action of a securing means which is remote from the sensor head. The securing means is sufficiently remote so that light detected by the light detector in the sensor head does not scatter through tissue which may be deformed by the securing mechanism. The securing mechanism could deform the tissue by applying pressure, to exsanguinate the tissue, or could attach to the tissue by vacuum, penetration, or glue, etc.
摘要:
A presenting part fetal pulse oximeter sensor with a securing mechanism for providing tension to a hook or other securing mechanism penetrating the fetal scalp. In one embodiment, a sensor can be secured to the presenting part of the fetus by means of a suture or a hook which penetrates the fetus' scalp. If a suture is used, the ends of the suture are wrapped around a securing member, such as a bar, attached to the back of the sensor. By tying the suture ends around this securing member, the sensor is pressed up against the fetus' scalp and retained in place by virtue of tension provided in the suture between the securing member and the portion of the suture penetrating the fetus' scalp.
摘要:
A fetal pulse oximeter sensor mounted on a sensor head with an articulating design. A lumen on one side of the sensor has a cable or rod therein to either push or pull that side of the sensor with respect to the main body, thus causing the sensor head to articulate. This can be used, for instance, to apply pressure against the fetus' scalp, with the sensor head, using the articulating mechanism, until an adhesive takes hold. Additionally, the sensor may be held in place on the fetus by an adhesive which is appropriate for a wet surface. The adhesive has the characteristics of having sufficient adhering characteristics to maintain the sensor in place, while at the same time not damaging the fetus' skin upon removal, without requiring suction.
摘要:
An optical sensor having a cover layer, an emitter disposed on a first side of the cover, a detector disposed on the first side of said cover, and a plurality of stacked independent adhesive layers disposed on the same first side of the cover, wherein the top most exposed adhesive layer is attached to a patient's skin. Thus, when the sensor is removed to perform a site check of the tissue location, one of the adhesive layers may also be removed and discarded, exposing a fresh adhesive surface below for reattachment to a patient's skin. The independent pieces of the adhesive layers can be serially used to extend the useful life of the product.
摘要:
In accordance with an embodiment of the present technique, there is provided methods and systems for detecting the presence of venous pulsation by adjusting the sensitivity of a detection algorithm based on a sensor characteristic and/or notifying a caregiver of the presence of venous pulsation by ceasing display of physiological parameters. An exemplary embodiment includes receiving one or more signals from a sensor, the one or more signals corresponding to absorption of light in a patient's tissue; calculating one or more physiological parameters of the patient based on the one or more signals; displaying the patient's physiological parameters; enabling detection of venous pulsation with variable sensitivity based on a location of the sensor; and suspending or terminating the display of the one or more of the patient's physiological parameters when venous pulsation is detected.
摘要:
A technique is provided for processing a physiological signal to compensate for artifacts. The technique includes identifying artifacts within the physiological signal. The technique also includes performing one or more multi-resolution decompositions, such as wavelet transformations, on the physiological signal and compensating for the identified artifacts in some or all of the respective decomposition components. The modified decomposition components may be reconstructed to generate an artifact-compensated signal which may be provided to a monitor or other device which is otherwise not configured to compensate for signal artifacts.
摘要:
Embodiments of the present invention include systems and methods that relate to pulse oximetry. Specifically, one embodiment includes an oximeter sensor, comprising a light emitting element configured to emit light, a light detector configured to receive the light, and a memory device that stores digital data, the digital data comprising a time the oximeter sensor lost communication.
摘要:
Embodiments of the present invention include systems and methods that relate to pulse oximetry. Specifically, one embodiment includes an oximeter sensor comprising a light emitting element configured to emit light, a light detector configured to detect the light, and a memory storing an ambient light value for comparison with a detected ambient light measurement.
摘要:
Embodiments of the present invention relate to pulse oximeter systems and methods. Specifically, one embodiment includes an oximeter system including an oximeter sensor comprising a light emitting element configured to emit light having a wavelength, a light detector configured to receive the light, and a memory storing signal quality data that facilitates determining a quality of signals sent from the light emitting element to the light detector via the light. Further, the oximeter system may comprise an oximeter monitor, comprising a receiving circuit configured to receive the signal quality data from the oximeter sensor, and a processor configured to use the signal quality data to calculate an optical transmissivity of a material for the wavelength.