摘要:
A deflector mirror is disclosed that includes a mirror substrate configured to vibrate in a reciprocating manner on beams as a torsional rotary shaft so as to deflect a light beam emitted from a light source. The mirror substrate includes multiple regions in each of portions thereof extending from the torsional rotary shaft to respective ends of the mirror substrate, the regions being different in flexural rigidity.
摘要:
An optical scanner, including a frame member; a pair of connection members near a coupling end with the frame member; a pair of elastic members connected with the frame member by the connection members; a mirror substrate supported by the pair of elastic members, the mirror substrate having a bending rigidity outward from the rotational axis for each area in accordance with a bending moment caused by oscillation, the mirror substrate having a slit at both connection ends with the pair of elastic members; and a piezoelectric element provided on each of the connection members, the piezoelectric element generating a torque for driving the mirror substrate oscillatable back and forth around the pair of elastic members as a torsion rotational axis.
摘要:
An optical scanner, including a frame member; a pair of connection members near a coupling end with the frame member; a pair of elastic members connected with the frame member by the connection members; a mirror substrate supported by the pair of elastic members, the mirror substrate having a bending rigidity outward from the rotational axis for each area in accordance with a bending moment caused by oscillation, the mirror substrate having a slit at both connection ends with the pair of elastic members; and a piezoelectric element provided on each of the connection members, the piezoelectric element generating a torque for driving the mirror substrate oscillatable back and forth around the pair of elastic members as a torsion rotational axis.
摘要:
An optical deflector includes a plurality of piezoelectric unimorph oscillating bodies (210a to 210d) that cause a reflecting plate (1) to oscillate rotationally, centering upon a pair of flexible support units (2a and 2b). The optical deflector forms a single structure of the oscillating plates (23a to 23b), the reflecting plate (1), the flexible support units (2a and 2b), and a support body (9), by connecting one set of the terminals of the oscillating plates (23a to 23d) of the suite of piezoelectric unimorph oscillating bodies (210a to 210d) to the flexible support units (2a and 2b), and connecting the other set of terminals to the support body (9). Furthermore, the plurality of piezoelectric unimorph oscillating bodies (210a to 210d) each respectively comprise a plurality of parallel oscillating bodies (23a1 to 23a-3, 23b-1 to 23b-3, 23c-1 to 23c-3), and (23d-1 to 23d-3), and a suite of parallel actuators (28a-1 to 28a-3, 28c-1 to 28c-3, and 28d-1 to 28d-3).
摘要:
A scanner element includes a frame part formed by a substrate, a movable plate formed inside the frame part and a torsion bar swingably supporting the movable plate on the frame part. One of the movable plate and the torsion bar has an adjusting part formed by a process of forming the movable plate and the torsion bar so that a ratio of an actual value of a moment of inertia I+ΔI of the movable plate to an actual value of a spring constant K+ΔK of the torsion bar is substantially equal to a ratio of a design value of the moment of inertia I of the movable plate to a design value of the spring constant K of the torsion bar.
摘要:
A light emitting element has plural semiconductor layers including a light emitting layer and formed on one principal surface of a semiconductor substrate, and is constructed such that at least one portion of end faces of the plural semiconductor layers including the light emitting layer is set to a light emitting end face. Plural light emitting end faces are formed in the light emitting element. Angles formed between mutual adjacent end faces of the respective light emitting end faces are set such that lights emitted from at least two light emitting end faces among the plural light emitting end faces are mutually synthesized. Accordingly, lights from the plural light emitting end faces can be synthesized and emitted. As a result, an amount of light emitted in a forward direction of the light emitting element and an output of this light can be increased. Accordingly, coupling efficiency of the light emitting element and an optical fiber can be improved and a reduction in light emitting efficiency can be effectively prevented.
摘要:
A vibration unit including a frame, a vibration element including a substrate configured to vibrate, and a beam configured to connect the vibration element to the frame. The vibration unit is produced by applying an etching process to at least two surfaces of a substrate. A meeting position of the two surfaces of the substrate is located where a first etching process, which takes place on a first surface of the substrate and a second etching process, which takes place on a second surface of the substrate meet, and is located at a position other than a center position in a width direction of the beam.
摘要:
A vibration unit including a frame, a vibration element including a substrate configured to vibrate, and a beam configured to connect the vibration element to the frame. The vibration unit is produced by applying an etching process to at least two surfaces of a substrate. A meeting position of the two surfaces of the substrate located where a first etching process, which takes place on a first surface of the substrate and a second etching process, which takes place on a second surface of the substrate meet, and is located at a position other than a center position in a width direction of the beam.
摘要:
A scanner element includes a frame part formed by a substrate, a movable plate formed inside the frame part and a torsion bar swingably supporting the movable plate on the frame part. One of the movable plate and the torsion bar has an adjusting part formed by a process of forming the movable plate and the torsion bar so that a ratio of an actual value of a moment of inertia I+ΔI of the movable plate to an actual value of a spring constant K+ΔK of the torsion bar is substantially equal to a ratio of a design value of the moment of inertia I of the movable plate to a design value of the spring constant K of the torsion bar.