摘要:
A liquid crystal diffraction lens element and an optical head device, which can switch focal lengths of both of outgoing light and returning light by a single element, are provided.The liquid crystal lens element comprises transparent substrates 1a, 1b, a liquid crystal 4 sandwiched between the transparent substrates 1a, 1b, transparent electrodes 2a, 2b, birefringent Fresnel lens members 3a, 3b each having a Fresnel lens shape and made of a birefringent material, and a seal 5, wherein the extraordinary refractive index direction A of the birefringent Fresnel lens member 3a and the extraordinary refractive index direction B of the birefringent Fresnel lens member 3b are perpendicular to each other, and the alignment direction of the liquid crystal 4 at the interface between the liquid crystal 4 and the transparent substrate 1a is perpendicular to the alignment direction of the liquid crystal 4 at the interface between the liquid crystal 4 and the transparent substrate 1b.
摘要:
A liquid crystal diffraction lens element and an optical head device, which can switch focal lengths of both of outgoing light and returning light by a single element, are provided. The liquid crystal lens element comprises transparent substrates 1a, 1b, a liquid crystal 4 sandwiched between the transparent substrates 1a, 1b, transparent electrodes 2a, 2b, birefringent Fresnel lens members 3a, 3b each having a Fresnel lens shape and made of a birefringent material, and a seal 5, wherein the extraordinary refractive index direction A of the birefringent Fresnel lens member 3a and the extraordinary refractive index direction B of the birefringent Fresnel lens member 3b are perpendicular to each other, and the alignment direction of the liquid crystal 4 at the interface between the liquid crystal 4 and the transparent substrate 1a is perpendicular to the alignment direction of the liquid crystal 4 at the interface between the liquid crystal 4 and the transparent substrate 1b.
摘要:
A diffraction element having concave/convex-like diffraction gratings in its two surfaces from which at least two separated light beams can be taken in the same direction without changing largely the propagating direction of diffracted light even if the temperature of the operating environment changes. A diffraction grating having a concave/convex shape in cross-section is formed in the incoming-side surface of the transparent substrate and two diffraction gratings of concave/convex shape in cross-section are formed in the outgoing-side surface wherein the grating pitch of the first one is made equal to the grating pitch of one of the second ones.In addition, a reflection type diffraction element exhibiting a good wavelength dependence of diffraction efficiency without being dependent largely on the direction of polarization of an incoming light is provided. A pseudo sawtooth-like diffraction grating is formed in either surface of the transparent substrate, a reflective film is formed on a diffraction grating portion, and an antireflective film is formed on the opposite surface.
摘要:
A liquid crystal lens element having a lens function is provided, which is small sized without having moving part, and which can stably carry out correction of spherical aberration containing a power component corresponding to focal point change of incident light.A liquid crystal lens element which changes a focal length of light transmitted through a liquid crystal 16 according to the magnitude of the voltage applied to the liquid crystal 16 sandwiched between a pair of transparent substrates 11 and 12, which comprises transparent electrodes 13 and 14 provided on the respective transparent substrates 11 and 12 for applying a voltage for the liquid crystal 16, and a concave-convex portion 17 having a saw-tooth-shaped cross-sectional shape having a rotational symmetry about an optical axis and formed on one surface of the transparent electrode 13 with a transparent material, wherein at least concave portions of the concave-convex portion 17 are filled with the liquid crystal 16 so as to change the substantial refractive index of the liquid crystal 16 according to the magnitude of applied voltage.
摘要:
A polarizing diffraction element having a wavelength selectivity which functions as a polarizing diffraction element at a wavelength λ1, and which does not function as a diffraction grating not depending on incident polarization state and shows high transmittance at a wavelength λ2, and an optical head device employing the element, are provided. The polarizing diffraction element selectively diffracts or transmits incident light having two different wavelengths each containing a first circularly polarized light and a second circularly polarized light having a rotation opposite from the rotation of the first circularly polarized light, depending on wavelength and polarization state of the incident light. Then, a reflective wavelength region for at least the first circularly incident light, does not contain said two incident wavelengths.
摘要:
A liquid crystal element including a liquid crystal cell that has transparent substrates having electrodes and a liquid crystal layer sandwiched between the substrates, the liquid crystal cell having a retardation value for a linearly polarized light having a wavelength of λ incident and transmitting through the liquid crystal cell, the retardation value changing from R1 to R2 (R1>R2>0) when a first voltage V1 applied between the electrodes is changed to a second voltage V2 (V1≠V2). The liquid crystal element also includes a phase plate having a retardation value R for a linearly polarized light having the wavelength of λ, the retardation value R satisfying a relation R+Rv=m×λ (m: integer) with a retardation value Rv generated by a third voltage satisfying R1≧Rv≧R2.
摘要翻译:一种液晶元件,包括具有透明基板的液晶单元,所述液晶单元具有电极和夹在所述基板之间的液晶层,所述液晶单元具有入射并通过液晶的λ波长的线偏振光的延迟值 单元,延迟值从R 1到R 2(R 1 1 / R 2 2 SUB> 0)变化,当 施加在电极之间的第一电压V SUB 1被改变为第二电压V 2(V 1/2> V 2) SUB>)。 液晶元件还包括具有波长为λ的直线偏振光的延迟值R的相位差,延迟值R满足关系R + R V = m×λ(m:整数) 具有通过满足R 1的第三电压产生的延迟值R V 2< V 2< 。
摘要:
An adhesive is coated on at least one surface of a thin film of organic material having birefringent properties and a phase-difference producing function, and a fixing substrate having transmitting or reflecting properties is bonded to the thin film of organic material by the adhesive, wherein materials satisfying relations of E1
摘要:
An adhesive is coated on at least one surface of a thin film of organic material having birefringent properties and a phase-difference producing function, and a fixing substrate having transmitting or reflecting properties is bonded to the thin film of organic material by the adhesive, wherein materials satisfying relations of E1
摘要:
A projection type display apparatus comprising a light source apparatus which is provided with an elliptic mirror 12, a light source 11 disposed at the first focal point, a cone-like material disposed at the second focal point, a condenser lens 13, display elements 15R-15B, a color separating and synthesizing optical system, second condenser lenses 16R-16B and a projection lens 19. The cone-like material is one selected from the group of a convex cone lens, a concave cone lens 2, a convex cone-like reflector and a concave cone-like reflector 20. In the projection type display element, light emitted from the light source is introduced into the cone-like material and is emitted as divergent light through the conical surface of the cone-like material. The divergent light is introduced into the condenser lens 13 so that the light is rendered to be parallel light fluxes, which are color-separated and introduced into the display elements 15R-15B disposed for each color in order to form light fluxes of display colors. The light fluxes are again subjected to color synthesization, and the synthesized light is projected as a full color picture image on a screen through the projection lens 19. The projection type display apparatus provides a display having uniformity, a good contrast ratio and brightness.
摘要:
An optical joint for joining a first light transmissive material to a second light transmissive material. The joint comprises a transparent adhesive layer between the first and second materials, and an antireflection film between each of the first and second materials and the adhesive layer. The joint prevents Fresnel reflection which would otherwise occur between the light transmissive materials.