摘要:
A semiconductor integrated circuit of the present invention is provided with a clock control portion having a clock generation portion for generating a clock signal and an output command signal input portion for receiving a clock output command signal from the outside, and an internal circuit controlled by an output clock signal that is output from the clock control portion, and the clock control portion is configured so that it outputs the output clock signal to the internal circuit when a certain time period has passed from a time when the output command signal is received.
摘要:
A semiconductor integrated circuit of the present invention is provided with a clock control portion having a clock generation portion for generating a clock signal and an output command signal input portion for receiving a clock output command signal from the outside, and an internal circuit controlled by an output clock signal that is output from the clock control portion, and the clock control portion is configured so that it outputs the output clock signal to the internal circuit when a certain time period has passed from a time when the output command signal is received.
摘要:
A semiconductor IC includes a test circuit comprising a logic circuit, a test timing generator, a first register serving as a test signal generation point, and second and third registers serving as test signal observation points. In this test circuit, a target signal transmission path to be tested is selected from a plurality of signal transmission paths in the logic circuit, and the test timing generator outputs a test clock having a cycle according to a delay time of the selected signal transmission path on design to the first to third registers, whereby the first register generates a test signal and the second and third registers observe the test signal. Therefore, the signal transmission paths connecting the test signal generation point and the test signal observation point are tested with high efficiency, whereby more signal transmission paths are tested for delay faults with less number of times the test is executed.
摘要:
A semiconductor device constructed by mounting a plurality of chip intellectual properties (IPs) on a common semiconductor wiring substrate, a method for testing the device and a method for mounting the chip IPs. A silicon wiring substrate on which chip IPs can be mounted is provided. A circuit for a boundary scan test is formed on the silicon wiring substrate by connecting flip flops. The flip flops are connected to wiring and are arranged to test connections in the wiring. The entire IP On Super-Sub (IPOS) device or each chip IP may be arranged to facilitate a scan test, a built-in self-test (BIST), etc., on the internal circuit of the chip IP.
摘要翻译:通过将多个芯片智能特性(IP)安装在公共半导体布线基板上构成的半导体器件,测试器件的方法和安装芯片IP的方法。 提供了可以安装芯片IP的硅布线基板。 通过连接触发器在硅布线基板上形成用于边界扫描测试的电路。 触发器连接到布线并被布置成测试布线中的连接。 整个IP On Super Sub(IPOS)设备或每个芯片IP可以被布置成便于在芯片IP的内部电路上进行扫描测试,内置自检(BIST)等。
摘要:
A semiconductor device constructed by mounting a plurality of chip intellectual properties (IPs) on a common semiconductor wiring substrate, a method for testing the device and a method for mounting the chip IPs. A silicon wiring substrate on which chip IPs can be mounted is provided. A circuit for a boundary scan test is formed on the silicon wiring substrate by connecting flip flops. The flip flops are connected to wiring and are arranged to test connections in the wiring. The entire IP On Super-Sub (IPOS) device or each chip IP may be arranged to facilitate a scan test, a built-in self-test (BIST), etc., on the internal circuit of the chip IP.
摘要:
A semiconductor device constructed by mounting a plurality of chip intellectual properties (IPs) on a common semiconductor wiring substrate, a method for testing the device and a method for mounting the chip IPs. A silicon wiring substrate on which chip IPs can be mounted is provided. A circuit for a boundary scan test is formed on the silicon wiring substrate by connecting flip flops. The flip flops are connected to wiring and are arranged to test connections in the wiring. The entire IP On Super-Sub (IPOS) device or each chip IP may be arranged to facilitate a scan test, a built-in self-test (BIST), etc., on the internal circuit of the chip IP.
摘要翻译:通过将多个芯片智能特性(IP)安装在公共半导体布线基板上构成的半导体器件,测试器件的方法和安装芯片IP的方法。 提供了可以安装芯片IP的硅布线基板。 通过连接触发器在硅布线基板上形成用于边界扫描测试的电路。 触发器连接到布线并被布置成测试布线中的连接。 整个IP On Super Sub(IPOS)设备或每个芯片IP可以被布置成便于在芯片IP的内部电路上进行扫描测试,内置自检(BIST)等。
摘要:
In response to a design request, fault detection strategy optimizing means selects RT-VCs and a fault detection method from a VCDB. The design request includes: requirements for a system LSI (e.g., area, number of pins, test time and information about the weights of prioritized constraints); and VC information. The fault detection strategy optimizing means performs computations for optimization in view of various parameters, thereby specifying a best fault detection strategy and a method of constructing a single-chip fault detection controller. On the VCDB, multiple VCs associated with the same function and mutually different test techniques are stored. By weighting the parameters affecting a test cost in accordance with a user defined priority order, a test technique of the type minimizing the total test cost can be selected from the VCDB.
摘要:
An apparatus for testing a semiconductor device by mounting a plurality of chip intellectual properties (IPs) on a common semiconductor wiring substrate, including a silicon wiring substrate on which the chip IPs are mounted. A circuit for a boundary scan test is formed on the silicon wiring substrate by connecting flip-flops to wiring, which are arranged to test connections in the wiring. An IP on Super-Sub (IPOS) device or each chip IP may be arranged to facilitate a scan test, a built-in self-test (BIST), etc., on the internal circuit of the chip IP.
摘要:
Elements of a combinational circuit are divided into plural groups. The output from a terminal Q is fixed at shifted timing in flip-flop circuits belonging to each of groups X, Y and Z resulting from this grouping. With the outputs from the terminals Q of the flip-flop circuits thus fixed, an operation of a shift mode is carried out. When the operation of the shift mode is completed, a hold releasing operation and a capture operation are carried out with respect to each of the groups of the flip-flop circuits. For example, the hold releasing operation is carried out when one clock is at a high level with the capture operation carried out when the clock is at a low level, or the hold releasing operation is successively carried out with respect to each of the groups and then the capture operation for capturing a data signal is carried out with respect to each of the groups.
摘要:
Elements of a combinational circuit are divided into plural groups. The output from a terminal Q is fixed at shifted timing in flip-flop circuits belonging to each of groups X, Y and Z resulting from this grouping. With the outputs from the terminals Q of the flip-flop circuits thus fixed, an operation of a shift mode is carried out. When the operation of the shift mode is completed, a hold releasing operation and a capture operation are carried out with respect to each of the groups of the flip-flop circuits. For example, the hold releasing operation is carried out when one clock is at a high level with the capture operation carried out when the clock is at a low level, or the hold releasing operation is successively carried out with respect to each of the groups and then the capture operation for capturing a data signal is carried out with respect to each of the groups.