Abstract:
A tank for a heat exchanger includes an extruded tank section having a generally constant extrusion profile extending in a longitudinal direction from a first tank end to a second tank end. A first planar end cap is joined to the extruded tank section near the first tank end, and a second planar end cap is joined to the extruded tank section near the second tank end. Together, the extruded tank section and first and second end caps can at least partially define an internal tank volume. The first and second planar end caps are both arranged at non-perpendicular angles to the longitudinal direction.
Abstract:
An air to air heat exchanger includes a first and a second cooling air flow passage extending over a core depth of the heat exchanger. A heated air flow passage is arranged between the cooling air flow passages, and extends over a first percentage of the core depth. Thermally conductive separators are arranged between the heated air flow passage and each of the cooling air flow passages. A first structurally reinforced section is provided between the separators, and extends from a cooling air inlet face in the core depth direction over a second percentage of the core depth. A second structurally reinforced section is provided between the separators, and extends from a cooling air outlet face in the core depth direction over a third percentage of the core depth. The sum of the first, second, and third percentages is greater than 100 percent.
Abstract:
An air to air heat exchanger includes a first and a second cooling air flow passage extending over a core depth of the heat exchanger. A heated air flow passage is arranged between the cooling air flow passages, and extends over a first percentage of the core depth. Thermally conductive separators are arranged between the heated air flow passage and each of the cooling air flow passages. A first structurally reinforced section is provided between the separators, and extends from a cooling air inlet face in the core depth direction over a second percentage of the core depth. A second structurally reinforced section is provided between the separators, and extends from a cooling air outlet face in the core depth direction over a third percentage of the core depth. The sum of the first, second, and third percentages is greater than 100 percent.
Abstract:
A tank for a heat exchanger includes an extruded tank section having a generally constant extrusion profile extending in a longitudinal direction from a first tank end to a second tank end. A first planar end cap is joined to the extruded tank section near the first tank end, and a second planar end cap is joined to the extruded tank section near the second tank end. Together, the extruded tank section and first and second end caps can at least partially define an internal tank volume. The first and second planar end caps are both arranged at non-perpendicular angles to the longitudinal direction.
Abstract:
A tank for a heat exchanger includes an extruded tank section having a generally constant extrusion profile extending in a longitudinal direction from a first tank end to a second tank end. A first planar end cap is joined to the extruded tank section near the first tank end, and a second planar end cap is joined to the extruded tank section near the second tank end. Together, the extruded tank section and first and second end caps can at least partially define an internal tank volume. The first and second planar end caps are both arranged at non-perpendicular angles to the longitudinal direction.
Abstract:
A tank for a heat exchanger includes an extruded tank section having a generally constant extrusion profile extending in a longitudinal direction from a first tank end to a second tank end. A first planar end cap is joined to the extruded tank section near the first tank end, and a second planar end cap is joined to the extruded tank section near the second tank end. Together, the extruded tank section and first and second end caps can at least partially define an internal tank volume. The first and second planar end caps are both arranged at non-perpendicular angles to the longitudinal direction.
Abstract:
A header for a heat exchanger includes a first and a second cylindrical fluid manifold extending in parallel. Each of the first and second manifolds have tube slots that extend through an arcuate wall section of the manifold. A thickened wall section of the header having a generally triangular wall section is bounded by the first and second fluid manifolds and by a planar outer surface of the header. An aperture extends through the thickened wall section to provide a fluid communication pathway between the first and second cylindrical fluid manifolds.