摘要:
An integrated circuit comprises an external memory, a plurality of parallel connected Vector Processing Engines (VPEs), and an External Memory Unit (EMU) providing a data transfer path between the VPEs and the external memory. Each VPE contains a plurality of data processing units and a message queuing system adapted to transfer messages between the data processing units and other components of the integrated circuit.
摘要:
An integrated circuit comprises an external memory, a plurality of parallel connected Vector Processing Engines (VPEs), and an External Memory Unit (EMU) providing a data transfer path between the VPEs and the external memory. Each VPE contains a plurality of data processing units and a message queuing system adapted to transfer messages between the data processing units and other components of the integrated circuit.
摘要:
A system for performing data-parallel operations and task-parallel operations. A first switch fabric node (SFN) includes first and second lane processing engines (LPEs). The first LPE includes a first set of lane processing units (LPUs) configured to perform data-parallel operations, where each LPU performs a set of operations, and each LPU uses a different set of data for the set of operations, and each LPU within the first set of LPUs uses a different set of data for the set of operations. The second LPE includes a second set of LPUs configured to perform task-parallel operations, where each LPU performs a different set of operations. A processing control engine (PCE) is configured to distribute instructions and data to the first LPE and the second LPE. Advantageously, data parallel operations and task parallel operations are able to be performed on the same processor simultaneously.
摘要:
A method, apparatus, system, and computer program product for of digital imaging. Multiple cameras comprising lenses and digital images sensors are used to capture multiple images of the same subject, and process the multiple images using difference information (e.g., an image disparity map, an image depth map, etc.). The processing commences by receiving a plurality of image pixels from at least one first image sensor, wherein the first image sensor captures a first image of a first color, receives a stereo image of the first color, and also receives other images of other colors. Having the stereo imagery, then constructing a disparity map and an associated depth map by searching for pixel correspondences between the first image and the stereo image. Using the constructed disparity map, captured images are converted into converted images, which are then combined with the first image, resulting in a fused multi-channel color image.
摘要:
A color image and a depth image of a live video are received. Each of the color image and the depth image are processed to identify a foreground, background, and an unknown region band of the live video. The unknown region band may comprise pixels between the foreground and the background. Further processing is performed to segment the pixels of the unknown region band between the foreground and the background. As such, processing is performed on the unknown region band in order to provide an improved user foreground video.
摘要:
A method, apparatus, system, and computer program product for of digital imaging. Multiple cameras comprising lenses and digital images sensors are used to capture multiple images of the same subject, and process the multiple images using difference information (e.g., an image disparity map, an image depth map, etc.). The processing commences by receiving a plurality of image pixels from at least one first image sensor, wherein the first image sensor captures a first image of a first color, receives a stereo image of the first color, and also receives other images of other colors. Having the stereo imagery, then constructing a disparity map and an associated depth map by searching for pixel correspondences between the first image and the stereo image. Using the constructed disparity map, captured images are converted into converted images, which are then combined with the first image, resulting in a fused multi-channel color image.
摘要:
A color image and a depth image of a live video are received. Each of the color image and the depth image are processed to identify a foreground, background, and an unknown region band of the live video. The unknown region band may comprise pixels between the foreground and the background. Further processing is performed to segment the pixels of the unknown region band between the foreground and the background. As such, processing is performed on the unknown region band in order to provide an improved user foreground video.
摘要:
A color image and a depth image of a live video are received. A user is extracted from the information of the color image and the depth image. Spurious depth vales may be corrected. Points or pixels of an image as seen from a viewpoint of a reference camera at a reference camera location are mapped to points of the image as would be seen from a viewpoint of a virtual camera at a virtual camera location. As such, a transformed color image is generated. Disoccluded pixels may be processed to address any gaps within the transformed color image.
摘要:
An RGB color image and an infrared intensity image of a live video are received. The RGB color image is converted to a colorspace image comprising a channel corresponding to a brightness value. Each pixel of the converted colorspace image is evaluated to determine whether the brightness channel of the pixel exceeds a threshold value. If the brightness channel of the pixel exceeds the threshold value, the infrared intensity value of a corresponding pixel from the infrared intensity image is mixed into the pixel's channel value that corresponds to brightness. The converted colorspace image is converted back to an RGB color image.
摘要:
A system is disclosed for executing depth image-based rendering of a 3D image by a computer having a processor and that is coupled with one or more color cameras and at least one depth camera. The color cameras and the depth camera are positionable at different arbitrary locations relative to a scene to be rendered. In some examples, the depth camera is a low resolution camera and the color cameras are high resolution. The processor is programmed to propagate depth information from the depth camera to an image plane of each color camera to produce a propagated depth image at each respective color camera, to enhance the propagated depth image at each color camera with the color and propagated depth information thereof to produce corresponding enhanced depth images, and to render a complete, viewable image from one or more enhanced depth images from the color cameras. The processor may be a graphics processing unit.