Abstract:
A pressing sensor that includes a pressing portion deformed by pressing, a piezoelectric sensor that generates a detection voltage based on the deformation amount, and a first current-voltage conversion circuit that converts a charge/discharge current for a capacitance of the piezoelectric sensor into a voltage signal and outputs the voltage signal. Moreover, a deformation amount detector obtains an integrated value of an output voltage and detects the integrated value as the deformation amount of the pressing portion. A minute vibration sensor detects presence or absence of minute vibration of the pressing portion according to presence or absence of a minute fluctuation state of the output voltage and an integration reset processor resets the integrated value in response to absence of the minute vibration.
Abstract:
A capacitor is coupled in parallel with a piezoelectric unit in a sensor. The piezoelectric unit is formed by a film which is sandwiched between a signal electrode and a reference potential electrode. A capacitor is formed by a dielectric film located between the signal electrode and a reference potential electrode. As a result, the capacitance of the sensor element is higher than it would be if the sensor only contained the piezoelectric unit.
Abstract:
An RF system is provided that includes an RFID card and a reader-writer device. The RFID card includes a substrate, an RFIC element, an antenna coil, and a deformation sensor. The reader-writer device and the RFID card transmit and receive predetermined information between an antenna coil of the RFID card and an antenna coil of the reader-writer device through a magnetic field. The RFIC element transmits the first signal via the antenna coil when the deformation sensor does not detect bending deformation of the substrate, and the RFIC element transmits the second signal via the antenna coil when the deformation sensor detects the bending deformation of the substrate.
Abstract:
A piezoelectric sensor that includes a piezoelectric film, first and second adhesive layers, first and second plate electrodes and a glass plate. The piezoelectric film includes first and second principal surfaces. The first adhesive layer attaches the first plate electrode to the first principal surface. The second adhesive layer attaches the second plate electrode to the second principal surface. The second plate electrode is attached to the glass plate such that the second adhesive layer and the second plate electrode are interposed between the piezoelectric film and the glass plate. The glass plate is distorted by being pushed. The second adhesive layer is thicker than the first adhesive layer.
Abstract:
A push-in amount detection sensor includes a piezoelectric film, an electrode-formed protective film, and an adhesive layer. The electrode-formed protective film adheres to the piezoelectric film with the adhesive layer interposed therebetween such that an electrode is located on the side of the piezoelectric film. Relative permittivity ∈a of the adhesive layer is higher than relative permittivity ∈p of the piezoelectric film. Preferably an electrostatic capacitance per unit area of the adhesive layer is higher than an electrostatic capacitance per unit area of the piezoelectric film, more preferably the electrostatic capacitance per unit area of the adhesive layer is substantially double the electrostatic capacitance per unit area of the piezoelectric film. The thickness of the adhesive layer is set within a predetermined thickness range.