Abstract:
To ensure a sufficient communication distance and to concurrently suppress a conductor loss, a coil antenna includes a magnetic core including a first peripheral surface including at least a first principal surface, a first coil conductor located on the first principal surface and wound around a predetermined winding axis, a first base material layer stacked on the first principal surface, including at least a first surface parallel or substantially parallel to the first principal surface, and made of a material having a lower magnetic permeability than the magnetic core, and a second coil conductor located on at least the first surface. Opposite ends of the second coil conductor are coupled to the first coil conductor on the first principal surface, and a direction in which a current flows through the first coil conductor on the first principal surface is substantially the same as a direction in which a current flows through the second coil conductor on the first surface.
Abstract:
A display device includes a display portion, a light source, a reflecting member, and a piezoelectric element. The display portion displays an image. The light source outputs light to the display portion. The reflecting member is provided on one side of a principal surface of the display portion and reflects the light of the light source. The piezoelectric element is provided on one side of the principal surface of the reflecting member.
Abstract:
An antenna of a communication terminal is disposed on a side on which a bottom surface of a reflective plate, which is included in a display, is present. When the reflective plate is irradiated by an LED light source, the antenna cannot be seen from the side on which a display screen of the display is disposed. Accordingly, an antenna coil of the antenna does not need transparent electrodes and can be made of various materials each having a high conductivity. Therefore, the antenna has high sensitivity, low manufacturing cost, and very efficiently performs near field communication with an external device located on the display screen side of the display.
Abstract:
An active electrode and a passive electrode are electrically field-coupled with an active electrode and a passive electrode provided in a power transmission device, respectively. Power in a high frequency voltage excited on the active electrode and the passive electrode is supplied to a mobile unit via a step-down transformer, a rectification smoothing circuit, and a DC-DC converter. A CPU turns off switches when wireless communication is carried out. The passive electrode functions as a booster antenna that is magnetically field-coupled with an antenna coil. A high frequency signal outputted from an RF circuit is transmitted via the antenna coil and the passive electrode, and a high frequency signal transmitted from the power transmission circuit is inputted, via the passive electrode and the antenna coil, to the RF circuit.
Abstract:
An antenna device includes a casing including a metal casing portion and a feed coil. The metal casing portion includes a main surface, a side surface connected to the main surfaces, and a notch portion located in the side surface. The feed coil is disposed inside the casing to be coupled with the metal casing portion by a magnetic field, and includes a winding central portion forming a coil opening portion. The feed coil is disposed near the notch portion, with the coil opening portion directed to a region including the notch portion.
Abstract:
The vapor chamber includes a casing, a working fluid, a microchannel, and a wick. The casing includes an upper casing sheet and a lower casing sheet that face each other and are joined together at an outer edge so as to define an internal space therebetween. The working fluid is sealed in the internal space. The microchannel is in the lower casing sheet and in communication with the internal space so as to form a flow path for the working fluid. The wick is in the internal space of the casing, and is in contact with the microchannel. An area of the wick is larger than an area of a region corresponding to the microchannel in a plan view of the vapor chamber.
Abstract:
A display device includes a display portion, a light source, a reflecting member, and a piezoelectric element. The display portion displays an image. The light source outputs light to the display portion. The reflecting member is provided on one side of a principal surface of the display portion and reflects the light of the light source. The piezoelectric element is provided on one side of the principal surface of the reflecting member.
Abstract:
An operation input device having an exterior portion that includes a band portion extending in a belt shape and having flexibility and a housing; and a control unit (23) that is housed in the exterior portion and performs input processing based on a detection signal indicating detection of a predetermined operation. The operation input device is provided with a deformation detection unit that outputs a detection signal associated with a deformation of the band portion or a deformation of the housing to the control unit.
Abstract:
A display device includes a housing, an operation surface, a position sensor, a press sensor, and a display unit. The position sensor detects a touched position on the operation surface. The press sensor detects a press on the operation surface. The display unit displays an image. When the press sensor detects a pressing amount not smaller than a first threshold, a control unit sets, as a rotation axis of a three-dimensional image, a direction orthogonal to the sliding direction of the touched position detected in the position sensor. The control unit then rotates the three-dimensional image in accordance with the sliding direction of the touched position detected in the position sensor.
Abstract:
A piezoelectric element that includes a plurality of laminated piezoelectric films and adhesive layers. The piezoelectric films stretch and contract in a predetermined direction parallel to principal surfaces thereof when a voltage is applied thereto. The adhesive layers are formed partially between the piezoelectric films when seen from a plan view, are aligned at intervals in the predetermined direction of the stretching and contracting of the piezoelectric films and bond the piezoelectric films to each other. The adhesive layers are formed at both ends of the piezoelectric films in the predetermined direction.