Abstract:
A semiconductor crystal body processing method includes providing a semiconductor crystal body, sandwiching the semiconductor crystal body between a pair of conductive pressurizing tools, applying a pulse-like current between the pair of pressurizing tools to heat the semiconductor crystal body to a target temperature equal to or higher than a temperature at which the semiconductor crystal body is plastically deformed by pressurization and lower than its melting point, and applying pressure and a pulse-like current between the pair of pressurizing tools to thereby maintain the temperature of the semiconductor crystal body at the target temperature and mold the semiconductor crystal body into a target shape by plastic deformation.
Abstract:
A weight member includes two sides opposite to each other in an X-axis direction when looked at in a plan view. A vibrating beam includes one end portion connected at one location to a fixation member and the other end portion connected at one location to one of the two sides of the weight member in the X-axis direction when looked at in a plan view. The vibrating beam supports the weight member to be displaceable in the X-axis direction. A holding beam includes one end portion connected at one location to the fixation member and the other end portion connected at one location to the other of the two sides of the weight member opposing to each other in the X-axis direction when looked at in a plan view. The holding beam supports the weight member to be displaceable in the X-axis direction. A driver is disposed on the vibrating beam and vibrates the vibrating beam. A detector is disposed on the vibrating beam and configured to output a detection signal changes according to deformation of the vibrating beam.
Abstract:
A vibrator in a vibrating gyroscope includes a circular annular portion, a rectangular annular portion, and joining portions. The rectangular annular portion is disposed adjacent to an outer side of the circular annular portion. The joining portions join the circular annular portion and the rectangular annular portion. The rectangular annular portion includes linear beam portions. The joining portions join the circular annular portion and the center portions of the beam portions to each other.
Abstract:
An acceleration sensor includes a fixation member, a weight member including a plate with two opposing sides parallel or substantially parallel to an X-direction and two opposing sides parallel to a Y-axis direction in a plan view, the weight member including a cutout extending in a direction about 45° relative to the X and Y axis directions, a vibrating beam linearly extending in the direction about 45° relative to the X and Y axis directions in the plan view, and one end portion is connected to the fixation member and the other end portion is connected to the weight member, the vibrating beam is partly arranged within the cutout and supporting the weight member to be displaceable in a Z-axis direction, a driver disposed on the vibrating beam and vibrating the vibrating beam, and a detector disposed on the vibrating beam and outputting a detection signal that is changed depending on deformation of the vibrating beam.
Abstract:
A vibrator includes first and second circular or substantially circular arc-shaped beam portions, a base end-side weight portion, and a base end-side weight portion joining portion. The end portions of the first and second circular or substantially circular arc-shaped beam portions in an X-axis positive direction face each other across a distance in a Y-axis direction, and the end portions thereof in an X-axis negative direction are joined to each other. The base end-side weight portion is disposed between the first and second circular or substantially circular arc-shaped beam portions. The base end-side weight portion joining portion extends from a joining portion between the first circular or substantially circular arc-shaped beam portion and the second circular or substantially circular arc-shaped beam portion in the X-axis positive direction, and joined to the base end-side weight portion.