摘要:
Diffraction gratings are formed from grooves each having a reflective facet and a non-reflective facet. The net reflection of TE (Transverse Electric) and TM (Transverse Magnetic) polarizations from the grating structure is traded off against the polarization dependent reflection, by controlling the degree of metallization of the reflective facet and by ensuring that there is no metallization of non-reflective sidewalls. other diffraction gratings are manufactured from trenches etched perpendicular to a waveguide. The trenches are metallized and back-filled with a filling material having a refractive index matched to that of the waveguide. The gratings essentially have no non-reflecting sidewalls with insignificant polarization influence from side walls.
摘要:
Planar waveguide based grating devices and spectrometers, for species-specific wavelength detection for example, are disclosed. A planar waveguide spectrometer apparatus may have a microfluidic channel or compartment microfabricated integrally with a planar waveguide or hybrid assembled with the planar waveguide and optically coupled thereto. The planar waveguide may also include a thin planar substrate which is made of a transparent waveguiding optical material and has a planar multilayer, one or more input waveguides, a waveguide-based spectrometer, and one or more output waveguides integrally formed thereon. An apparatus which incorporates a planar waveguide, a diffractive construct for diffracting light through the planar waveguide onto a curved image surface, and a plurality of output waveguides emanating from the curved image surface at locations selected to extract predetermined wavelengths or wavelength ranges, is also disclosed.
摘要:
Diffraction gratings are formed from grooves each having a reflective facet and a non-reflective facet. The net reflection of TE (Transverse Electric) and TM (Transverse Magnetic) polarizations from the grating structure is traded off against the polarization dependent reflection, by controlling the degree of metallization of the reflective facet and by ensuring that there is no metallization of non-reflective sidewalls. other diffraction gratings are manufactured from trenches etched perpendicular to a waveguide. The trenches are metallized and back-filled with a filling material having a refractive index matched to that of the waveguide. The gratings essentially have no non-reflecting sidewalls with insignificant polarization influence from side walls.
摘要:
Planar waveguide based grating devices and spectrometers, for species-specific wavelength detection for example, are disclosed. A planar waveguide spectrometer apparatus may have a microfluidic channel or compartment microfabricated integrally with a planar waveguide or hybrid assembled with the planar waveguide and optically coupled thereto. The planar waveguide may also include a thin planar substrate which is made of a transparent waveguiding optical material and has a planar multilayer, one or more input waveguides, a waveguide-based spectrometer, and one or more output waveguides integrally formed thereon. An apparatus which incorporates a planar waveguide, a diffractive construct for diffracting light through the planar waveguide onto a curved image surface, and a plurality of output waveguides emanating from the curved image surface at locations selected to extract predetermined wavelengths or wavelength ranges, is also disclosed.
摘要:
A sensing element for sensing a mechanical property of a sample defining a sample surface using a contact force exerted the sample surface. The sensing element includes: a deformable element defining a contact surface and a deformable section in register with the contact surface, the deformable section being deformable between an undeformed configuration and a deformed configuration; a deformation sensor operatively coupled to the deformable section for sensing and quantifying a deformation of the deformable section between the deformed and undeformed configurations, the deformation sensor being an optical deformation sensor; and a force sensor operatively coupled to the deformable element for sensing the contact force exerted on the contact surface.
摘要:
Wavelength division multiplexing (WDM) has enabled telecommunication service providers to fully exploit the transmission capacity of optical fibers. State of the art systems in long-haul networks now have aggregated capacities of terabits per second. Moreover, by providing multiple independent multi-gigabit channels, WDM technologies offer service providers with a straight forward way to build networks and expand networks to support multiple clients with different requirements. In order to reduce costs, enhance network flexibility, reduce spares, and provide re-configurability many service providers have migrated away from fixed wavelength transmitters, receivers, and transceivers, to wavelength tunable transmitters, receivers, and transceivers as well as wavelength dependent add-drop multiplexer, space switches etc. However, to meet the competing demands for improved performance, increased integration, reduced footprint, reduced power consumption, increased flexibility, re-configurability, and lower cost it is desirable to exploit/adopt monolithic optical circuit technologies, hybrid optoelectronic integration, and microelectromechanical systems (MEMS).
摘要:
A sensing element for sensing a mechanical property of a sample defining a sample surface using a contact force exerted the sample surface. The sensing element includes: a deformable element defining a contact surface and a deformable section in register with the contact surface, the deformable section being deformable between an undeformed configuration and a deformed configuration; a deformation sensor operatively coupled to the deformable section for sensing and quantifying a deformation of the deformable section between the deformed and undeformed configurations, the deformation sensor being an optical deformation sensor; and a force sensor operatively coupled to the deformable element for sensing the contact force exerted on the contact surface.
摘要:
The present application is directed to a technological platform with integrated microfluidic and optical modules for bio-detection. The platform enables in-situ detection by integrating fluidics with optical source and detection capabilities within a fabricated microchip. The platform is a polymer-based microfluidic chip having integrated excitation source and detection elements in a vicinity of a microfluidic reaction chamber configured to contain a micro-volume of a test sample. The principle of detection is based on an excitation source induced fluorescence of the test sample within the microfluidic reaction chamber.
摘要:
A device, a method of fabricating the device and a sample analysis system that includes the device are provided. The device includes an optical waveguide having a plurality of nanofeatures integrated thereon to influence at least one of evanescence and coupling of an optical field of the optical waveguide. The sample analysis system includes a fluidic actuation system for introducing sample specimen fluid into a microfluidic channel of the device for evanescence based detection.