Abstract:
A bridge connector made of PCB material has a first plurality of press-fit pins on one portion of the bridge connector and a second plurality of press-fit pins on another portion of the bridge connector. Within the connector is a set of signal conductors. Each conductor connects a press-fit pin of the first plurality of press-fit pins to a corresponding press-fit pin of the second plurality of press-fit pins. When the connector is attached to a printed circuit board (PCB), the press-fit pins extend into and engage corresponding plated through holes in the PCB. The press-fit pins exert enough retention force to mechanically couple two PCB frame sections. The PCB frame sections are electrically connected through the press-fit pins and corresponding signal conductors of the bridge connector. A bridge connector attached at each corner of an infrared touch sensor frame assembly allows the assembly to be solidly assembled from four sections of PCB: a top, bottom, left, and right PCB frame section.
Abstract:
A high speed electrical connector includes a plurality of substantially planar signal transmission bodies (SPSTB), an insulative housing that retains the plurality of SPSTBs, and a plurality of self-adjusting surface-mount attachment structures (SASMAS). Each SASMAS is confined in its own guide with respect to an associated SPSTB. During the connector-to-printed circuit board (PCB) attachment process, the connector is heated so that solder within the connector that holds the SASMAS structures in place melts. As the connector settles with respect to the PCB, the SASMAS structures slide in their respective guides varying amounts to accommodate non-planarity of the upper surface of the PCB. In one example, each SPSTB is a printed circuit that has a plurality of signal conductors. Each conductor terminates in planar sliding surface. A SASMAS is self-adjustably soldered to each such sliding surface.
Abstract:
A flexible printed circuit (FPC) connector is surface mountable on a printed circuit board (PCB). An edge of an FPC is insertable into a slot in the connector so that contact beams in the connector press on corresponding conductors in the FPC, thereby making electrical contact with the FPC conductors. Each contact beam is mounted on and is coupled to a conductor of a substrate member within the connector. The substrate member has a microstrip design so that the characteristic impedance of a signal path from an FPC conductor, through a contact beam, through a surface mount attachment structure of the connector, and to a conductor in the PCB has only a small variation. The contact beam is not part of a fork-shaped metal clamp that has a spring portion and a radiating stiffening portion, but rather is a beam that presses on the FPC from one side only.
Abstract:
An electrical connector includes a housing and a contact held by the housing. The contact has a mating interface configured for mating with a mating contact of a mating connector. The contact has a planar side extending to a tip. An interface contact is separately provided from, and coupled to, the mating interface of the contact. The interface contact has a base coupled to the side of the contact proximate to the tip. The interface contact has a spring beam extending from the base away from the side of the contact. The spring beam is configured to engage the mating contact of the mating connector to make an electrical connection between the contact and the mating contact.
Abstract:
A high speed electrical connector includes a plurality of substantially planar signal transmission bodies (SPSTB), an insulative housing that retains the plurality of SPSTBs, and a plurality of self-adjusting surface-mount attachment structures (SASMAS). Each SASMAS is confined in its own guide with respect to an associated SPSTB. During the connector-to-printed circuit board (PCB) attachment process, the connector is heated so that solder within the connector that holds the SASMAS structures in place melts. As the connector settles with respect to the PCB, the SASMAS structures slide in their respective guides varying amounts to accommodate non-planarity of the upper surface of the PCB. In one example, each SPSTB is a printed circuit that has a plurality of signal conductors. Each conductor terminates in planar sliding surface. A SASMAS is self-adjustably soldered to each such sliding surface.
Abstract:
An electrical connector including a connector housing having a mating face that is configured to engage a mating connector. The electrical connector also includes a contact module that is held by the connector housing and that includes differential pairs of signal conductors. The contact module also includes dielectric ribs that encase corresponding signal conductors. The dielectric ribs are spaced apart from one another. The contact module also includes guard conductors that extend between and couple to adjacent dielectric ribs. The contact module also includes a conductive layer that is disposed on the dielectric ribs and the guard conductors. The conductive layer is electrically coupled to the guard conductors.
Abstract:
An electrical connector that includes a connector body having a conductive surface configured to oppose an engagement side of a mating connector. The electrical connector also includes electrical terminals that are held by the connector body and located in an array along the conductive surface. Adjacent terminals are separated by gaps that collectively form an interwoven reception region along the conductive surface between the electrical terminals. The electrical connector also includes ground contacts that are coupled to the conductive surface and are located in corresponding gaps. The ground contacts include flex portions that are configured to be compressed between the conductive surface and the engagement side of the mating connector when the mating connector is coupled to the electrical connector during a mating operation. The ground contacts are configured to electrically couple the conductive surface and the mating connector.
Abstract:
An electrical connector assembly includes a circuit board and an electrical connector mounted on the circuit board. The circuit board has a circuit board body having first and second surfaces and through-holes bored between the first and second surfaces. The circuit board has signal traces on internal layers of the circuit board that are generally parallel to the first and second surfaces. Portions of the circuit board body within the through-holes are etched away to expose portions of the signal traces beyond the circuit board body within the corresponding through-hole. The electrical connector includes a housing and signal terminals held by the housing. The signal terminals are received in respective through-holes of the circuit board and engage the corresponding signal traces.
Abstract:
A connector has a two-dimensional array of Press-Fit Pins (PFPs) and Conductive Resilient Surface Contact Elements (CRSCEs). Within the connector is a set of signal conductors. Each conductor is connected to a corresponding one of the PFPs or the CRSCEs. When the connector is attached to a printed circuit board (PCB), the PFPs extend into and engage corresponding plated through-holes in the PCB. As the PFPs are inserted into the through-holes, the CRSCEs contact the surface of the PCB and are compressed between the connector and the PCB so that each CRSCE makes an electrical connection between a pad on the PCB and a corresponding conductor in the connector. The retention force of the PFPs holds the CRSCEs in their compressed condition. The connector need not be soldered to the PCB, and solder bridging problems and breaking problems associated with solder tails and solder balls are avoided.
Abstract:
A surface mount component (for example, an electrical connector) includes a connector body portion and a plurality of temperature-activated self-extending surface mount attachment structures (TASESMAS). During a reflow solder process, amounts of solder within the connector melt. Surface and interfacial tensions of structures within the connector cause the TASESMAS structures to extend away from the connector body portion and toward an object (for example, a printed circuit board) to which the surface mount component is to be surface mount soldered. Each TASESMAS may self-extend a different amount to accommodate nonplanarities in the surface to which the component is to be surface mounted. When the component cools after reflow soldering, the amounts of solder solidify thereby fixing the TASESMAS structures in their extended positions.