摘要:
Provided are an electrical fuse, a semiconductor device having the same, and a method of programming and reading the electrical fuse. The electrical fuse includes first and second anodes disposed apart from each other. A cathode is interposed between the first and second anodes. A first fuse link couples the first anode to the cathode, and a second fuse link couples the second anode to the cathode.
摘要:
Provided are an electrical fuse, a semiconductor device having the same, and a method of programming and reading the electrical fuse. The electrical fuse includes first and second anodes disposed apart from each other. A cathode is interposed between the first and second anodes. A first fuse link couples the first anode to the cathode, and a second fuse link couples the second anode to the cathode.
摘要:
Provided are an electrical fuse, a semiconductor device having the same, and a method of programming and reading the electrical fuse. The electrical fuse includes first and second anodes disposed apart from each other. A cathode is interposed between the first and second anodes. A first fuse link couples the first anode to the cathode, and a second fuse link couples the second anode to the cathode.
摘要:
Provided are an electrical fuse, a semiconductor device having the same, and a method of programming and reading the electrical fuse. The electrical fuse includes first and second anodes disposed apart from each other. A cathode is interposed between the first and second anodes. A first fuse link couples the first anode to the cathode, and a second fuse link couples the second anode to the cathode.
摘要:
Provided is a semiconductor device having first and second gate electrodes. The semiconductor device includes a substrate, an active region extending in a first direction on the substrate, a first gate electrode crossing the active region and extending in a second direction, and a second gate electrode extending in the second direction on the first gate electrode, wherein the first gate electrode has a first width in the first direction, and wherein the second gate electrode has a second width in the first direction, the second width being less than the first width.
摘要:
Methods of forming a semiconductor device may include forming a fin-type active pattern that extends in a first direction on a substrate, the fin-type active pattern including a lower pattern on the substrate and an upper pattern on the lower pattern. A field insulating layer is formed on the substrate, the sidewalls of the fin-type active pattern, and a portion upper pattern protruding further away from the substrate than a top surface of the field insulating layer. A dummy gate pattern that intersects the fin-type active pattern and that extends in a second direction that is different from the first direction is formed. The methods include forming dummy gate spacers on side walls of the dummy gate pattern, forming recesses in the fin-type active pattern on both sides of the dummy gate pattern and forming source and drain regions on both sides of the dummy gate pattern.
摘要:
A semiconductor device is provided. The semiconductor device includes a first fin on a substrate, a first gate electrode formed on the substrate to intersect the first fm, a first elevated source/drain on the first fin on both sides of the first gate electrode, and a first metal alloy layer on an upper surface and sidewall of the first elevated source/drain.
摘要:
In semiconductor devices in which both NMOS devices and PMOS devices are used to perform in different modes such as analog and digital modes, stress engineering is selectively applied to particular devices depending on their required operational modes. That is, the appropriate mechanical stress, i.e., tensile or compressive, can be applied to and/or removed from devices, i.e., NMOS and/or PMOS devices, based not only on their conductivity type, i.e., n-type or p-type, but also on their intended operational application, for example, analog/digital, low-voltage/high-voltage, high-speed/low-speed, noise-sensitive/noise-insensitive, etc. The result is that performance of individual devices is optimized based on the mode in which they operate. For example, mechanical stress can be applied to devices that operate in high-speed digital settings, while devices that operate in analog or RF signal settings, in which electrical noise such as flicker noise that may be introduced by applied stress may degrade performance, have no stress applied.
摘要:
There is provided a semiconductor device which is formed on a semiconductor substrate and allows effective use of the feature of the semiconductor substrate, and there is also provided a method of manufacturing the same. An N-channel MOS transistor including a P-type body layer (3a), and a P-type active layer (6) for body voltage application which is in contact with the P-type body layer (3a) are formed on an SOI substrate which is formed to align a crystal direction of a support substrate (1) with a crystal direction of an SOI layer (3). A path connecting the P-type body layer (3a) and the P-type active layer (6) for body voltage application is aligned parallel to the crystal direction of the SOI layer (3). Since hole mobility is higher in the crystal direction, parasitic resistance (Ra, Rb) can be reduced in the above path. This speeds up voltage transmission to the P-type body layer (3a) and improves voltage fixing capability in the P-type body layer (3a).
摘要:
It is an object to obtain a semiconductor device having such a structure that respective electrical characteristics of an insulated gate type transistor and an insulated gate type capacitance are not deteriorated and a method of manufacturing the semiconductor device. An NMOS transistor Q1 and a PMOS transistor Q2 which are formed in an NMOS formation region A1 and a PMOS formation region A2 respectively have P−pocket regions 17 and N−pocket regions 27 in vicinal regions of extension portions 14e and 24e of N+ source-drain regions 14 and P+source-drain regions 24, respectively. On the other hand, an N-type variable capacitance C1 and a P-type variable capacitance C2 which are formed in an N-type variable capacitance formation region A3 and a P-type variable capacitance formation region A4 respectively do not have a region of a reverse conductivity type which is adjacent to extraction electrode regions corresponding to the P−pocket regions 17 and the N−pocket regions 27.