Abstract:
To provide a cellulose derivative excellent in thermoplasticity, water resistance and strength (elastic modulus, impact strength), a cellulose derivative, which is obtained by introducing a short-chain organic group (acetyl group), a medium-chain organic group having 3 to 5 carbon atoms and a long-chain organic group having 6 to 30 carbon atoms at the following substitution degrees DSs into a cellulose, is used: Short-chain organic group: 0.7≤DSSH≤1.5; Medium-chain organic group: 0.5≤DSME≤2.0; Long-chain organic group: 0.1≤DSLO
Abstract:
A cellulose resin formed by substituting hydrogen atoms of hydroxy groups of a cellulose with a long-chain component being a linear saturated aliphatic acyl group having 14 or more carbon atoms and a short-chain component being an acyl group having 2 or 3 carbon atoms, in which a degree of substitution with the long-chain component (DSLo) and a degree of substitution with the short-chain component (DSSh) satisfy conditional expressions (1) and (2) shown below: DSLo+DSSh≥2.1 (1) 4≤DSSh/DSLo≤12 (2).
Abstract:
The present invention relates to a secondary battery, comprising an electrode element in which a positive electrode and a negative electrode are opposed to each other, and an electrolyte solution, wherein the negative electrode active material comprises a metal alloyable with lithium and/or a metal oxide capable of intercalating/deintercalating lithium ions, and the electrolyte solution is a nonaqueous electrolyte solution comprising an electrolyte salt dissolved in a nonaqueous solvent, and comprises a carbonyl compound represented by the following formula (1): wherein two R1s may be the same or different from each other, and each independently represents hydrogen atom, substituted or unsubstituted alkyl group, cycloalkyl group, alkenyl group, alkynyl group, substituted or unsubstituted aromatic group, oxyalkylene group, substituted or unsubstituted alkoxy group, cycloalkyloxy group, alkenyloxy group, alkynyloxy group, substituted or unsubstituted aromatic oxy group, or oxyalkyleneoxy group.
Abstract:
Provided is a lithium secondary cell which has high capacity, suppresses deterioration in capacity and improves cycle characteristics particularly when used in high-temperature environments and has long lifespan. Provided is a lithium secondary cell including a positive electrode active material layer containing a positive electrode active material, a negative electrode active material layer containing a negative electrode active material and an electrolytic solution for immersing the positive and negative electrode active material layers, wherein the electrolytic solution contains at least one certain ester compound.
Abstract:
Disclosed is a nonaqueous electrolyte solution containing a nonaqueous solvent, an electrolyte salt dissolved in the nonaqueous solvent, and a conjugated carbonyl compound represented by the following formula (1). A secondary battery using this nonaqueous electrolyte solution shows an excellent cycle characteristic under a high-temperature environment even if a negative electrode active material containing silicon is used. wherein R1 represents R2a or —CO—R2a, R2a having a meaning given to R2, and R2 represents a hydrogen atom, an acyl group, an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, a substituted or unsubstituted aromatic group, an oxyalkylene group, an alkoxy group, a cycloalkyloxy group, an alkenyloxy group, an alkynyloxy group, an aromatic oxy group, an oxyalkyleneoxy group or the like.
Abstract:
A cellulose derivative obtained by substituting at least part of hydrogen atoms of hydroxy groups of a cellulose with an acyl group having 2 to 4 carbon atoms, a long-chain organic group having 7 or more carbon atoms and a high refractive-index organic group.
Abstract:
A cellulose resin wherein a hydrogen atom of a hydroxy group of cellulose is substituted with a long-chain component which is a linear saturated aliphatic acyl group having 14 or more carbon atoms and a short-chain component which is an acyl group (propionyl group) having 3 carbon atoms, the degree of substitution with the long-chain component (DSLo) and the degree of substitution with the short-chain component (DSSh) satisfy the following conditional expressions (1) and (2): DSLo+DSSh≥2.1 (1) 4≤DSSh/DSLo≤12 (2), the Izod impact strength is 5.0 kJ/m2 or more, and the MFR (melt flow rate at 200° C. and under a load of 5 kg) is 10 g/10 min or more.
Abstract:
The present invention relates to a negative electrode for a lithium ion secondary battery comprising an oxetane compound represented by a predetermined formula in an amount within a range of 0.001% by mass or more and 5.0% by mass or less based on the amount of a negative electrode active material, and a lithium ion secondary battery using the same.
Abstract:
The present invention relates to a secondary battery, comprising an electrode element in which a positive electrode and a negative electrode are opposed to each other, and an electrolyte solution, wherein the negative electrode active material comprises a metal alloyable with lithium and/or a metal oxide capable of intercalating/deintercalating lithium ions, and the electrolyte solution is a nonaqueous electrolyte solution comprising an electrolyte salt dissolved in a nonaqueous solvent, and comprises a carbonyl compound represented by the following formula (1): wherein two R1s may be the same or different from each other, and each independently represents hydrogen atom, substituted or unsubstituted alkyl group, cycloalkyl group, alkenyl group, alkynyl group, substituted or unsubstituted aromatic group, oxyalkylene group, substituted or unsubstituted alkoxy group, cycloalkyloxy group, alkenyloxy group, alkynyloxy group, substituted or unsubstituted aromatic oxy group, or oxyalkyleneoxy group.
Abstract:
A cellulose resin composition comprising a cellulose derivative and a lubricant, wherein the cellulose derivative is an acylated cellulose obtained by substituting at least a part of hydrogen atoms of hydroxy groups of a cellulose with an acyl group having 2 to 4 carbon atoms, and the content of the lubricant is in the range of 0.1 to 10% by mass. A cellulose resin composition capable of forming a molded body having a high-quality appearance and scratch resistance is provided.