Abstract:
In an orientation division type liquid crystal display device for widen a viewing angle of a display pixel of an active matrix type liquid crystal color display device having a COT structure, pixel color layers (6B, 6R, 6G) as color filters and pixel electrodes 3 are formed on a substrate on the side of the pixel electrodes and slopes 13 are provided along four side peripheries of each pixel electrode. Liquid crystal molecules 8 between each pixel electrode of the pixel electrode substrate and a common electrode of an opposing substrate are controlled in orientation direction along the slopes to divide it to a plurality of directions to thereby widen a viewing angle of a pixel display. The slope is formed on a step portion 12 formed by a BM layer formed on at least one of a gate electrode, a drain electrode and a source electrode formed in a periphery of the pixel electrode or at least one of a gate wiring and a drain wiring formed in the periphery or a step portion formed by partially overlapping peripheral portions of the adjacent pixel color layers.
Abstract:
A method of fabricating a substrate for a display device prevents the problems occurring in the pattering process of a photosensitive organic material layer, such as the nullstage image transfernull and nullmask image reflectionnull. A photosensitive organic material layer is formed on or over a transparent plate, the layer being divided into a display section and a terminal section located outside the display section. The photosensitive organic material layer has a first thickness in the display section and a second thickness different from the first thickness in the terminal section. The layer is exposed to exposing light in such a way that the layer in the display section is exposed at a first exposure value according to the first thickness and the layer in the terminal section is exposed at a second exposure value according to the second thickness.
Abstract:
An active matrix substrate of a channel protection type having a gate electrode, a drain electrode and a pixel electrode isolated from one another from layer to layer by insulating films. The active matrix substrate is to be prepared by four masks. A gate electrode layer, a gate insulating film and an a-Si layer are processed to the same shape on a transparent insulating substrate to form a gate electrode layer (102 of FIG. 6) and a TFF area. A drain electrode layer (106 of FIG. 6) is formed by a first passivation film (105 of FIG. 6) via a first passivation film (105 of FIG. 6) formed as an upper layer. In a second passivation film (107 of FIG. 6) formed above it are bored an opening through the first and second passivation films and an opening through the second passivation film. A wiring connection layer is formed by ITO (108 of FIG. 6) provided as an uppermost layer. A storage capacitance unit, comprised of the first and second passivation films sandwiched between the gate electrode and an electrode layer formed as a co-layer with respect to the gate electrode, is provided in the pixel electrode.
Abstract:
In a reflection type liquid crystal display device having a front light and a reflection type liquid crystal panel including a reflection electrode of uneven structure, average tilt angles of the uneven structure of the reflection electrode are changed to form a high directivity reflective region having a characteristic reflecting an incident light from the front light in a vertical direction and a wide viewing angle reflective region having a characteristic reflecting an outside light incident slantingly from the front in a vertical direction, thereby forming the high directivity reflective region and the wide viewing angle reflective region to be mixed in the reflection electrode in the same display device.
Abstract:
An active matrix liquid crystal display device which has color filters disposed on a TFT (Thin-Film Transistor) substrate, and which reduces the effect of light leakage regions over data lines for an increased viewing angle. The liquid crystal display device has the data lines disposed on the TFT substrate at respective gaps between adjacent two of pixel electrodes, for supplying data signals to TFTs to drive pixel electrodes, and a black matrix disposed on the TFT substrate in association with the data lines for blocking light passing in a predetermined viewing angle range through a light leakage region created in the liquid crystal layer depending on a potential difference between adjacent two of the pixel electrodes.
Abstract:
A reflector for a reflection-type LCD device is provided, which reflects efficiently incident light to the viewer's side and that suppresses the change of color tone. The reflector comprises a roughened surface having a protrusion pattern. The protrusion pattern gives inclination angle to the surface according to a specific distribution where a first component with an inclination angle value of 0null is 15% or less in area and a second component with an inclination angle value from 2null to 10null is 50% or greater in area. The protrusion pattern gives a variation range of chromaticity coordinates (x, y) on a chromaticity diagram dependent on an angle of view. The variation range is limited in a circle on the chromaticity diagram. The circle has a radius of approximately 0.05 and a center at a point corresponding to white color.