Systems and methods for tracking working-set estimates with a limited resource budget
    1.
    发明授权
    Systems and methods for tracking working-set estimates with a limited resource budget 有权
    以有限的资源预算跟踪工作集估计的系统和方法

    公开(公告)号:US09298616B2

    公开(公告)日:2016-03-29

    申请号:US14315881

    申请日:2014-06-26

    Applicant: NetApp, Inc.

    CPC classification number: G06F12/0802 G06F12/0888 G06F2212/6042

    Abstract: Embodiments of the systems and techniques described here can leverage several insights into the nature of workload access patterns and the working-set behavior to reduce the memory overheads. As a result, various embodiments make it feasible to maintain running estimates of a workload's cacheability in current storage systems with limited resources. For example, some embodiments provide for a method comprising estimating cacheability of a workload based on a first working-set size estimate generated from the workload over a first monitoring interval. Then, based on the cacheability of the workload, a workload cache size can be determined. A cache then can be dynamically allocated (e.g., change, possibly frequently, the cache allocation for the workload when the current allocation and the desired workload cache size differ), within a storage system for example, in accordance with the workload cache size.

    Abstract translation: 这里描述的系统和技术的实施例可以利用对工作负载访问模式和工作集行为的性质的几个见解,以减少内存开销。 因此,各种实施例使得可以在有限的资源的当前存储系统中维持工作负载的高速缓存的运行估计。 例如,一些实施例提供了一种方法,其包括基于在第一监视间隔上从工作负载产生的第一工作集大小估计来估计工作负载的可缓存性。 然后,基于工作负载的可缓存性,可以确定工作负载高速缓存大小。 然后可以根据工作负载高速缓存大小来动态地分配高速缓存(例如,当当前分配和期望的工作负载高速缓存大小不同时,可以频繁地改变工作负载的高速缓存分配),例如在存储系统内。

    GRAPH TRANSOFRMATIONS TO CORRECT VIOLATIONS OF SERVICE LEVEL OBJECTIONS IN A DATA CENTER
    2.
    发明申请
    GRAPH TRANSOFRMATIONS TO CORRECT VIOLATIONS OF SERVICE LEVEL OBJECTIONS IN A DATA CENTER 有权
    改变数据中心服务级别对象的图像转移

    公开(公告)号:US20140143282A1

    公开(公告)日:2014-05-22

    申请号:US13936851

    申请日:2013-07-08

    Applicant: NetApp, Inc.

    CPC classification number: G06F17/30312 G06F8/10 G06F9/00 G06F17/30

    Abstract: Graph transformations are used by a data management system to correct violations of service-level objectives (SLOs) in a data center. In one aspect, a process is provided to manage a data center by receiving an indication of a violation of a service-level objective associated with the data center from a server in the data center. A graph representation and a transformations data container are retrieved by the data management system from data storage accessible to the data management system. The transformations data container includes one or more transformations. The transformation is processed to create a mutated graph from a data center representation from the graph representation. An option for managing the data center is determined as a result of evaluating the mutated graphs.

    Abstract translation: 数据管理系统使用图形转换来纠正数据中心中服务级目标(SLO)的违规。 在一个方面,提供了一种通过从数据中心中的服务器接收与数据中心相关联的服务级别目标的违规的指示来管理数据中心的过程。 数据管理系统从数据管理系统可访问的数据存储中检索图表表示和转换数据容器。 变换数据容器包括一个或多个变换。 处理变换以从图表表示从数据中心表示创建突变图。 通过评估突变图来确定用于管理数据中心的选项。

    WORKLOAD IDENTIFICATION
    3.
    发明申请

    公开(公告)号:US20180018339A1

    公开(公告)日:2018-01-18

    申请号:US15715952

    申请日:2017-09-26

    Applicant: NetApp, Inc.

    Abstract: An embodiment of the invention provides an apparatus and method for classifying a workload of a computing entity. In an embodiment, the computing entity samples a plurality of values for a plurality of parameters of the workload. Based on the plurality of values of each parameter, the computing entity determines a parameter from the plurality of parameters that the computing entity's response time is dependent on. Here, the computing entity's response time is indicative of a time required by the computing entity to respond to a service request from the workload. Further, based on the identified significant parameter, the computing entity classifies the workload of the computing entity by selecting a workload classification from a plurality of predefined workload classifications.

    PROPOSED STORAGE SYSTEM SOLUTION SELECTION FOR SERVICE LEVEL OBJECTIVE MANAGEMENT
    4.
    发明申请
    PROPOSED STORAGE SYSTEM SOLUTION SELECTION FOR SERVICE LEVEL OBJECTIVE MANAGEMENT 有权
    建议存储系统解决方案选择服务水平目标管理

    公开(公告)号:US20160112504A1

    公开(公告)日:2016-04-21

    申请号:US14981730

    申请日:2015-12-28

    Applicant: NetApp, Inc.

    Abstract: Described herein is a system and method for dynamically managing service-level objectives (SLOs) for workloads of a cluster storage system. Proposed states/solutions of the cluster may be produced and evaluated to select one that achieves the SLOs for each workload. A planner engine may produce a state tree comprising nodes, each node representing a proposed state/solution. New nodes may be added to the state tree based on new solution types that are permitted, or nodes may be removed based on a received time constraint for executing a proposed solution or a client certification of a solution. The planner engine may call an evaluation engine to evaluate proposed states, the evaluation engine using an evaluation function that considers SLO, cost, and optimization goal characteristics to produce a single evaluation value for each proposed state. The planner engine may call a modeler engine that is trained using machine learning techniques.

    Abstract translation: 这里描述了用于动态管理用于集群存储系统的工作负载的服务级目标(SLO)的系统和方法。 可以生成和评估集群的建议状态/解决方案,以选择为每个工作负载实现SLO的状态/解决方案。 计划器引擎可以产生包括节点的状态树,每个节点表示提出的状态/解。 可以基于允许的新解决方案类型将新节点添加到状态树,或者可以基于接收到的时间约束来移除节点,以执行解决方案或解决方案的客户端认证。 计划器引擎可以调用评估引擎来评估提出的状态,评估引擎使用考虑SLO,成本和优化目标特征的评估函数,以产生每个建议状态的单个评估值。 计划器引擎可以调用使用机器学习技术训练的建模者引擎。

    Managing service level objectives for storage workloads
    5.
    发明授权
    Managing service level objectives for storage workloads 有权
    管理存储工作负载的服务级别目标

    公开(公告)号:US09223613B2

    公开(公告)日:2015-12-29

    申请号:US14484780

    申请日:2014-09-12

    Applicant: NETAPP, INC.

    Abstract: Described herein is a system and method for dynamically managing service-level objectives (SLOs) for workloads of a cluster storage system. Proposed states/solutions of the cluster may be produced and evaluated to select one that achieves the SLOs for each workload. A planner engine may produce a state tree comprising nodes, each node representing a proposed state/solution. New nodes may be added to the state tree based on new solution types that are permitted, or nodes may be removed based on a received time constraint for executing a proposed solution or a client certification of a solution. The planner engine may call an evaluation engine to evaluate proposed states, the evaluation engine using an evaluation function that considers SLO, cost, and optimization goal characteristics to produce a single evaluation value for each proposed state. The planner engine may call a modeler engine that is trained using machine learning techniques.

    Abstract translation: 这里描述了用于动态管理用于集群存储系统的工作负载的服务级目标(SLO)的系统和方法。 可以生成和评估集群的建议状态/解决方案,以选择为每个工作负载实现SLO的状态/解决方案。 计划器引擎可以产生包括节点的状态树,每个节点表示提出的状态/解。 可以基于允许的新解决方案类型将新节点添加到状态树,或者可以基于接收到的时间约束来移除节点,以执行解决方案或解决方案的客户端认证。 计划器引擎可以调用评估引擎来评估提出的状态,评估引擎使用考虑SLO,成本和优化目标特征的评估函数,以产生每个建议状态的单个评估值。 计划器引擎可以调用使用机器学习技术训练的建模者引擎。

    Modeler for predicting storage metrics

    公开(公告)号:US09406029B2

    公开(公告)日:2016-08-02

    申请号:US14143012

    申请日:2013-12-30

    Applicant: NetApp, Inc.

    CPC classification number: G06N99/005 G06F11/3409 G06F17/30294 G06F17/30587

    Abstract: Described herein is a system and method for dynamically managing service-level objectives (SLOs) for workloads of a cluster storage system. Proposed states/solutions of the cluster may be produced and evaluated to select one that achieves the SLOs for each workload. A planner engine may produce a state tree comprising nodes, each node representing a proposed state/solution. New nodes may be added to the state tree based on new solution types that are permitted, or nodes may be removed based on a received time constraint for executing a proposed solution or a client certification of a solution. The planner engine may call an evaluation engine to evaluate proposed states, the evaluation engine using an evaluation function that considers SLO, cost, and optimization goal characteristics to produce a single evaluation value for each proposed state. The planner engine may call a modeler engine that is trained using machine learning techniques.

Patent Agency Ranking