Abstract:
A hollow stabilizer has a tubular shape and is provided with a torsion section that is provided to a vehicle and that extends in the vehicle width direction; an arm section that extends in the front-back direction of the vehicle; and bent sections that connect the torsion section and the arm section. The hardness of the outer surface of the bent inner sides of the bent sections of the hollow stabilizer is 70% or more with respect to the hardness of the outer surface of the arm section.
Abstract:
A stabilizer formed by using a metal bar having a solid structure and configured to reduce a displacement between right and left wheels, including a torsion part extending in a vehicle width direction, being capable of a torsional deformation, and having a diameter of 10 to 32 mm, is provided. The stabilizer has a chemical composition containing at least C: 0.15% by mass or more to 0.39% by mass or less, Mn, B, and Fe, and also has a metal structure 90% or more of which is a martensite structure.
Abstract:
A coil spring processing device includes an end positioning device, shot peening device, and controller. The end positioning device positions ends of a coil spring. The shot peening device includes a turntable mechanism, pressure mechanism, rotation mechanism which rotates the coil spring, and projection mechanism which projects shots. Holding mechanisms each include a lower shifting prevention jig and an upper shifting prevention jig. The controller stops a first holding mechanism and a second holding mechanism in rotation stop positions corresponding to end turn portions of the coil spring.
Abstract:
A method of manufacturing a hollow stabilizer includes a forming step of subjecting an element pipe to a bending process, to form a product shape including bent portions, and a quenching step of quenching the element pipe subjected to the bending process. In the quenching step, a cooling process is performed by immersing the element pipe made of steel in coolant and by spraying the coolant to an outer surface of the bent portion.
Abstract:
A steel for high-strength spring has an Ac3 transformation temperature as an indicator of the decarburization performance, which is calculated by Equation (1) below, is from 859 to 885° C., a maximum hardened diameter DI as an indicator of the hardening performance, which is calculated by Equation (2) below, is from 70 to 238 mm, and a temper hardness HRC as an indicator of the spring performance, which is calculated by Equation (3) below, is from 50 to 55. Ac3=910−203×√{square root over (C)}−15.2Ni+44.7Si+104V+31.5Mo+13.1W (1) DI=DO×fSi×fMn×fP×fS×fCu×fNi×fCr (2) HRC=38.99+17.48C+2.55Si−2.28Ni+2.37Cr+8.04Ti (3) wherein, D0=8.65×√{square root over (C)}, fSi=1+0.64×% Si, fMn=1+4.10×% Mn, fP=1+2.83×% P, fS=1−0.62×% S, fCu=1+0.27×% Cu, fNi=1+0.52×% Ni, and fCr=1+2.33×% Cr.
Abstract:
The invention provides a production method for stabilizers which produces with high productivity in a compact production line, without tempering. The production method for stabilizers of the invention includes: forming a steel bar material containing at least C: 0.15 wt % to 0.39 wt %, Mn, B and Fe into a product shape by bending; and quenching the bent steel bar material in a medium having a heat transfer coefficient higher than or close to that of water.
Abstract:
A hollow stabilizer has a tubular shape and is provided with a torsion section that is provided to a vehicle and that extends in the vehicle width direction; an arm section that extends in the front-back direction of the vehicle; and bent sections that connect the torsion section and the arm section. The hardness of the outer surface of the bent inner sides of the bent sections of the hollow stabilizer is 70% or more with respect to the hardness of the outer surface of the arm section.
Abstract:
A vertical motion impeller-type shot peening device performs a second shot peening to a coil spring including first shot peening indentations. The vertical motion impeller-type shot peening device includes a workpiece holding mechanism including a lower end turn support and an upper end turn support, a stress applying mechanism which compresses the coil spring, a rotation mechanism, and a projection mechanism which includes a pair of vertically movable impeller units. A first rough surface including first shot peening indentations is formed on a part of end turn portions of the coil spring. A second rough surface including second shot peening indentations is formed on the entire surface of wire except for the first rough surface.
Abstract:
A method of manufacturing a suspension coil spring includes forming first shot peening indentations on a surface of a wire by projecting first shots toward the wire and forming a compressive residual stress portion to which a compressive residual stress is imparted from the surface of the wire to a first depth, and projecting ball shots as second shots toward a lower end turn portion by an ultrasonic apparatus. A size of each ball shot is larger than a size of each first shot. The method includes forming second shot peening indentations on a surface of the lower end turn portion, and a deep residual stress portion in the lower end turn portion, a compressive residual stress of the deep residual stress portion imparted from the surface of the wire to a second depth that is deeper than the first depth.
Abstract:
A method of manufacturing a hollow stabilizer includes a forming step of subjecting an element pipe to a bending process, to form a product shape including bent portions, and a quenching step of quenching the element pipe subjected to the bending process. In the quenching step, a cooling process is performed by immersing the element pipe made of steel in coolant and by spraying the coolant to an outer surface of the bent portion.