Abstract:
A probe holder includes: a first layered member including members layered over one another; and a second layered member bonded to the first layered member and including members layered over one another. Each of the first and second layered members includes: a first member made of a material having a low dielectric constant; a second member provided on one of surfaces of the first member and having higher hardness than the first member; and a third member provided on the other surface of the first member and having higher hardness than the first member. The probe holder further includes a holder hole formed by bonding the third members of the first and second layered members, the holder hole penetrating the probe holder in a direction in which the first and second layered members are layered, and having a stepped hole shape having a smaller diameter in the second members.
Abstract:
A test coupon includes a pseudo element circuit which is constituted of a main circuit section and an adjusting section. The main circuit section includes a first pattern conductor and second pattern conductors. The first pattern conductor and the second pattern conductors overlap one another with a dielectric layer interposed therebetween. The first pattern conductor electrically conducts to the second pattern conductors. The main circuit section represents the R-component and the L-component of an equivalent circuit, and is a dominant circuit element which determines a signal waveform. The adjusting section includes linear conductors. A peak of a voltage waveform is suppressed by the R- and L-components of the adjusting section.
Abstract:
A tail pad portion is provided in a flexure tail including a metal base and a conductive circuit portion. Tail terminals are arranged in the tail pad portion. The metal base is made of stainless steel, and includes a frame structure having a first frame and a second frame. An opening is formed between the first frame and the second frame. The tail terminals are arranged parallel to each other between the first frame and the second frame. A bridge portion is formed between the first frame and the second frame. The bridge portion includes at least one bridge element which is a part of the metal base. The bridge element is arranged at a position which overlaps at least one of the tail terminals in the thickness direction.
Abstract:
A wiring structure of a head suspension including a flexure that supports a head and is attached to a load beam applying load onto the head, comprises write wiring and read wiring formed on the flexure and connected to the head, each having wires of opposite polarities, and further including a stacked interleaved part includes segments electrically connected to the respective wires of the write wiring, the segments stacked on and facing the wires through an electrical insulating layer so that the facing wire and segment have opposite polarities.
Abstract:
A flexure for mounting a plurality of reproduction elements thereon includes a metal base and an interconnection part. The metal base includes a first area, and a second area in which a window portion is formed. The interconnection part includes an insulating layer including a first lane which covers the first area and a second lane which covers the second area, a write trace pair connected to a recording element, read trace pairs provided on the second lane to face the window portion and connected to reproduction elements, respectively, and a ground trace arranged between two adjacent read trace pairs and provided with grounding points at two end portions.
Abstract:
A contact probe includes: a first plunger; a second plunger; and a coil spring provided between the first and second plungers and configured to connect the first and second plungers to each other so as to freely advance and retreat. The first plunger is provided with a groove portion formed on a side surface of the first plunger.
Abstract:
A tail pad portion is provided in a flexure tail including a metal base and a conductive circuit portion. Tail terminals are arranged in the tail pad portion. The metal base is made of stainless steel, and includes a frame structure having a first frame and a second frame. An opening is formed between the first frame and the second frame. The tail terminals are arranged parallel to each other between the first frame and the second frame. A bridge portion is formed between the first frame and the second frame. The bridge portion includes at least one bridge element which is a part of the metal base. The at least one bridge element is arranged at a position which does not overlap the tail terminals in the thickness direction.
Abstract:
A flexure tail is provided in a flexure including a metal base and a conductive circuit portion. The flexure tail includes a tail pad portion. In the tail pad portion, tail electrodes to are arranged. At the tail pad portion, a stub which remains after a test pad portion is cut off is formed. The stub includes conductors to which are left uncut. The conductors to which are left uncut are electrically connected to the tail electrodes to, respectively. The stub includes a bent portion. The bent portion is formed by bending a frame portion of the tail pad portion, and forms an angle of 30° or more with respect to a circuit board. The tail electrodes to are joined to terminals to of the circuit board.
Abstract:
A probe unit includes: a contact probe that comes into contact with, at both ends of a longitudinal length of the contact probe, each of electrodes that are contact targets; and a probe holder including a main body portion configured to hold the contact probe, the main body portion being insulating. The main body portion includes, formed therein: a holder hole configured to hold the contact probe inserted in the holder hole; and a counterbore portion drilled in at least part of an area around the holder hole, the area being on one of surfaces of the main body portion, the surfaces being near one end and another end of the contact probe, the counterbore portion having an inner wall surface that forms a hollow space and that is insulating.
Abstract:
A flexure of a disk drive suspension with a magnetic head having first and second elements. The flexure includes a metal base, a conductive circuit along the metal base, and a tail pad in a flexure tail of the flexure. The tail pad includes first and second frames with an opening therebetween; a first pair of tail terminals arranged between and insulated from the first and second frames, connected to the first element; a second pair of tail terminals arranged between and insulated from the first and second frames, connected to the second element; and a third pair of tail terminals arranged between and insulated from the first and second frames, connected to a third element. First, second and third bridge elements of the metal base are arranged between first tail terminals, second tail terminals, and third tail terminals, respectively. A first bridge-free opening portion is between the first and second tail terminals, and a second bridge-free opening portion is between the first and third tail terminals.