Abstract:
A light emitting device includes a light emitting element, a molded member, and a sealing member. The light emitting element is arranged on or above the molded member. The sealing member covers the light emitting element. The sealing member contains a phosphor, and a filler material. The phosphor can be excited by light of the light emitting element, and emit luminescent radiation. The filler material contains neodymium hydroxide, neodymium aluminate or neodymium silicate. The filler material absorbs a part of the spectrum of the mixed light of the light emitting element and the phosphor so that the other parts of the spectrum of this mixed light are extracted from the light emitting device.
Abstract:
A method of producing a nitride fluorescent material including a step of first heat-treating a first compound containing at least one alkaline earth metal element selected from the group consisting of Ba, Sr, Ca and Mg, a second compound containing at least one element selected from the group consisting of Eu, Ce, Tb and Mn, and a Si-containing compound, in an atmosphere containing nitrogen to obtain a calcined product of raw materials, and a step of second heat-treating the calcined product of raw materials, a Ba-containing compound, a Si-containing compound, and optionally a third compound containing at least one element selected from the group consisting of Eu, Ce, Tb and Mn, and optionally a fourth compound containing at least one alkaline earth metal element selected from the group consisting of Sr, Ca and Mg, in an atmosphere containing nitrogen to obtain a nitride fluorescent material is provided, wherein the ratio of the charge-in molar amount of Ba to the total charge-in molar amount of at least one alkaline earth metal element to be contained in the calcined product of raw materials in the step of obtaining the calcined product of raw materials is smaller than the ratio of the charge-in molar amount of Ba to the total charge-in molar amount of at least one alkaline earth metal element to be contained in the nitride fluorescent material in the step of obtaining the nitride fluorescent material.
Abstract:
A method of producing a nitride fluorescent material including a step of first heat-treating a first compound containing at least one alkaline earth metal element selected from the group consisting of Ba, Sr, Ca and Mg, a second compound containing at least one element selected from the group consisting of Eu, Ce, Tb and Mn, and a Si-containing compound, in an atmosphere containing nitrogen to obtain a calcined product of raw materials, and a step of second heat-treating the calcined product of raw materials, a Ba-containing compound, a Si-containing compound, and optionally a third compound containing at least one element selected from the group consisting of Eu, Ce, Tb and Mn, and optionally a fourth compound containing at least one alkaline earth metal element selected from the group consisting of Sr, Ca and Mg, in an atmosphere containing nitrogen to obtain a nitride fluorescent material is provided, wherein the ratio of the charge-in molar amount of Ba to the total charge-in molar amount of at least one alkaline earth metal element to be contained in the calcined product of raw materials in the step of obtaining the calcined product of raw materials is smaller than the ratio of the charge-in molar amount of Ba to the total charge-in molar amount of at least one alkaline earth metal element to be contained in the nitride fluorescent material in the step of obtaining the nitride fluorescent material.
Abstract:
A method of producing a nitride fluorescent material having relatively high light emission intensity is provided. The method of producing a nitride fluorescent material includes preparing a calcined product having a composition containing at least one first element selected from the group consisting of Ba, Sr, Ca, and Mg, at least one second element selected from the group consisting of Eu, Ce, Tb, and Mn, and Si and N, and bringing the calcined product into contact with a fluorine-containing substance at a temperature in a range of −20° C. or higher and lower than 150° C.