Abstract:
There is provided a transparent conductive film that is simply and easily produced, has a high transmittance and high conductivity, and can suppress the occurrence of a rainbow-like patchy pattern. A transparent conductive film of the present invention includes: a transparent base material; and a transparent conductive layer formed on the transparent base material, the transparent conductive film having a total light transmittance of 80% or more, wherein: the transparent base material has an absolute value of a thickness direction retardation of 100 nm or less; and the transparent conductive layer contains a metal nanowire or a metal mesh.
Abstract:
There is provided a laminate excellent in dimensional stability under high temperature and high humidity despite the fact that the laminate includes resin films.A laminate according to an embodiment of the present invention includes a plurality of resin films with hard coat layers, which are laminated together, the plurality of resin films with hard coat layers each including a base layer containing a thermoplastic resin and a hard coat layer containing a curable resin, the hard coat layer being formed on the base layer.
Abstract:
There is provided a transparent conductive film having a hardly visible pattern of the conductive part (conductive pattern) can be provided. A transparent conductive film of the present invention includes: a transparent base material; and a transparent conductive layer arranged on at least one side of the transparent base material, wherein: the transparent conductive layer includes a conductive part and an insulation part; the conductive part includes a metal nanowire; and the insulation part includes an air bubble and/or a non-conductive light-scattering body.
Abstract:
A conductive film is provided which is excellent in bending resistance, conductivity is not impaired even when the film is bent, and when the film is applied to an image display apparatus including a polarizing plate, the film can contribute to an improvement in visibility through a polarizing lens. A conductive film includes a retardation film; and a transparent conductive layer arranged on at least one surface of the retardation film, wherein: the retardation film has an in-plane retardation at a wavelength of 550 nm of from 90 nm to 190 nm; a ratio (Re[400]/Re[550]) of an in-plane retardation Re[400] of the retardation film at a wavelength of 400 nm to the in-plane retardation Re[550] of the retardation film at a wavelength of 550 nm is from 0.5 to 0.9; and the transparent conductive layer includes at least one of a conductive nanowire, a metal mesh, and a conductive polymer.
Abstract:
There is provided an image display apparatus having high contrast and making it difficult to visually observe its conductive pattern despite including a metal nanowire or a metal mesh. An image display apparatus of the present invention includes: a circularly polarizing plate, a transparent conductive film, and a display element comprising a reflector made of a metal in the stated order from a viewer side, wherein: the transparent conductive film comprises a transparent base material and a transparent conductive layer arranged on at least one side of the transparent base material; the transparent base material has an in-plane retardation Re of from 1 nm to 100 nm; and the transparent conductive layer comprises a metal nanowire or a metal mesh.
Abstract:
A method for producing a polarizing film includes a step (1) of preparing a lyotropic liquid crystalline solution having electric conductivity of not more than 50 μS/cm (expressed in terms of 0.05% by weight) and containing a dichroic dye and a solvent, a step (2) of preparing a base material having at least one surface subjected to a hydrophilization treatment, and a step (3) of coating the solution prepared in the step (1) on the hydrophilized surface of the base material prepared in the step (2) at a coating rate of not less than 100 mm/second, and drying the solution. The polarizing film produced in the method has a dichroic ratio of 25 or more at a wavelength of 600 nm.