Abstract:
The invention provides a cathode sheet for use in a nonaqueous electrolyte secondary battery, including a composite material comprising a collector and a layer of a cathode active material provided thereon. The layer of a cathode active material includes: (a) a conductive polymer and (b) at least one selected from a polycarboxylic acid and a metal salt of a polycarboxylic acid; and the conductive polymer is a polymer in a dedoped state or in a dedoped and reduced state. The polymer constituting the conductive polymer is at least one selected from polyaniline, a polyaniline derivative, polypyrrole, a polypyrrole derivative, and polythiophene; and the polycarboxylic acid is at least one selected from polyacrylic acid, polymethacrylic acid, polyvinylbenzoic acid, polyallylbenzoic acid, polymethallylbenzoic acid, polymaleic acid, polyfumaric acid, polyglutaminic acid, polyaspartic acid, alginic acid, carboxymethylcellulose, and a copolymer including repeating units of at least two of the polymers listed herein.
Abstract:
A particulate active material for a power storage device positive electrode having a higher energy density is provided, which includes particles of an electrically conductive polymer and a conductive agent, wherein the electrically conductive polymer particles each have a surface coated with the conductive agent.
Abstract:
A particulate active material for a power storage device positive electrode having a higher energy density is provided, which includes particles of an electrically conductive polymer and a conductive agent, wherein the electrically conductive polymer particles each have a surface coated with the conductive agent.
Abstract:
The method for producing a porous film of the present invention includes producing a stretched film by stretching a resin sheet containing at least polyolefin, and then irradiating the stretched film with a vacuum ultraviolet ray. The separator for a non-aqueous electrolyte battery of the present invention is composed of the porous film obtained by the production method of the present invention. The non-aqueous electrolyte battery of the present invention is provided with the separator for a non-aqueous electrolyte battery of the present invention.
Abstract:
A higher performance positive electrode for a power storage device is provided, which ensures a higher capacity density per unit weight of an active substance and, particularly, a higher initial capacity in initial charge/discharge. The power storage device positive electrode includes electrically conductive polymer particles as an active substance, and the electrically conductive polymer particles each have a flat shape.
Abstract:
A power storage device positive electrode which ensures development of a higher capacity at the initial stage of a charge/discharge process and a higher capacity density is provided. The power storage device positive electrode contains an electrically conductive polymer as a positive electrode substance, where the electrically conductive polymer is present in a particulate form having a median diameter of not greater than 5 μm.