Abstract:
An apparatus (UEA) may generate a zero-tail signal to be transmitted in an LTE/LTE-A cell, by introducing time domain samples with zero power or very low power in specific positions of a time symbol tail. The apparatus (UEA) may transmit the generated zero-tail signal to a base station (eNB), such that a first user terminal (UEA) is located in the cell farther away (e.g. on a cell edge) from the base station (eNB) than a second user terminal (UEB). Thus coexistence of signals sent by user terminals (UEA, UEB) located at different distances from the base station (eNB) within a same receiver window is enabled without inter-symbol interference. The generated zero-tail signal may also be transmitted from the first user terminal (UEA) or from the base station (eNB) in an outdoor system that is detectable by a neighboring indoor system.
Abstract:
There is provided a method comprising: obtaining, by an apparatus, a first data block, a second data block and a third data block; generating a first signal, wherein a first part of the first signal is generated based on a data of the first data block, and wherein a second part of the first signal is generated based on a data of the second data block, the second part being subsequent in time domain compared with the first part; generating a second signal, wherein a first part of the second signal is generated based on a data of the third data block, and wherein a second part of the second signal is generated based on the data of the second data block, the second part being subsequent in time domain compared with the first part; and transmitting the first and second signals.
Abstract:
Methods and apparatuses for controlling at least one device configured to receive scheduled frequency resources of a scheduled system are disclosed. At least one device in inactive mode is allocated a secondary frequency resource independently from scheduling of the scheduled system. A signal is transmitted to the at least one device in inactive mode a signal on the secondary frequency resource to control reception of the scheduled frequency resources. A device in inactive mode receiving the signal on the secondary frequency resource can control reception of the scheduled frequency resources based on the signal.
Abstract:
Systems, methods, apparatuses, and computer program products for generating sequences for zero-tail discrete fourier transform (DFT)-spread-orthogonal frequency division multiplexing (OFDM) (ZT DFT-s-OFDM) reference signals. One method includes adding a zero vector to an input sequence, and performing an iterative manipulation of the input sequence. The performing of the iterative manipulation of the input sequence may include, for example: computing frequency domain response of the sequence, normalizing elements of the computed frequency domain sequence to unitary power while maintaining phase of each of the elements, converting the sequence to time domain, generating a zero-padded sequence by forcing a zero head and tail of the sequence, and repeating the steps until a final sequence with zero-tail and flat frequency response is obtained.