Abstract:
Distribution of a key in a wireless system comprising at least one mobile device is disclosed. Data regarding relative rotation between devices in optical data communications for key distribution is determined. The determined data is taken into account in determining how to use the optical data communications for establishing a key.
Abstract:
Methods and apparatuses for communication between a mobile device and a target device are disclosed. Information of a target device is determined by means of at least one element of a mobile device for providing an optical link with the target device. An optical component of the mobile device is then aligned with an optical component of the target device based on said information determined by the mobile device. The target device can obtain information of relative positioning of the target device and the mobile device determined for the purposes of providing an optical link between the target device and the mobile device and the optical component thereof can be aligned with the optical component of the mobile device based on the information.
Abstract:
Adjustment of an optica! component of a device comprises determining of at least one derivative of coupling efficiency of the optical component as a function of parameters used for control of a steering function of the optica! component. At least one oscillating component is induced into the parameters for the determining. The adjustment of the optical component is based on the determined at least one derivative.
Abstract:
A system comprising: at least one sensor and at least one control apparatus wherein; the sensor comprises: at least one processor; and at least one memory including computer program code;the at least one memory and the computer program code configured to, with the at least one processor, cause the apparatus at least to perform;compressing a sensor data signal using a sampling basis to obtain a compressed data signal; and in response to a first feedback signal changing a sampling basis used to obtain the compressed data signal; and wherein the control apparatus comprises: at least one processor; and at least one memory including computer program code; the at least one memory and the computer program code configured to, with the at least one processor, cause the apparatus at least to perform; receiving the data signal from the at least one sensor;determining a quality of the received data signal; and if the quality of the received data signal is within a first threshold providing a feedback signal to control the sampling basis of the sensor.
Abstract:
An approach is provided for adiabatic quantum annealing (computing, AQC). There is disclosed an apparatus comprising a first quantum dot and a second quantum dot forming a first kind of double quantum dot; and a third quantum dot and a fourth quantum dot forming a second kind of double quantum dot. The apparatus also comprises a first control element for adjusting a capacitance of a capacitive element; a second control element for supplying a control voltage to the first kind of double quantum dot; a metallic or superconducting contact to capacitively couple the first kind of double quantum dot to the fourth quantum dot; and an electric charge sensor for providing an indication of the state of the first kind of double quantum dot. The present invention also relates to a method for controlling the apparatus.
Abstract:
An approach is provided for adiabatic quantum annealing (computing, AQC). There is disclosed a method for finding a solution by using adiabatic quantum annealing. In an embodiment of the method an initial state to an adiabatic quantum computing element is provided and an adiabatic quantum annealing is performed by the adiabatic quantum computing element. The result of the adiabatic quantum annealing is examined to determine whether one or more terminating criteria have been met. If the examining reveals that one or more terminating criteria have been met, returning a candidate solution with the lowest energy. If the examining reveals that one or more terminating criteria have not been met, the method further comprises adjusting the state of the adiabatic quantum computing element; and repeating the adiabatic quantum annealing. The present invention also relates to apparatuses and computer program products for implementing the method and circuitry relating to the adiabatic quantum annealing.
Abstract:
An apparatus includes at least one processor; and at least one non-transitory memory including computer program code; wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus at least to: estimate an importance of parameters of a neural network based on a graph diffusion process over at least one layer of the neural network; determine the parameters of the neural network that are suitable for pruning or sparsification; remove neurons of the neural network to prune or sparsify the neural network; and provide at least one syntax element for signaling the pruned or sparsified neural network over a communication channel, wherein the at least one syntax element comprises at least one neural network representation syntax element.
Abstract:
An approach is provided for solving optimization problems. The present invention also relates to a method comprising receiving a spin index and receiving one or more convergence criteria. The spin index is used to estimate an energy value; wherein the convergence criteria and the estimated energy value are used to determine whether the convergence criteria was fulfilled. There are also disclosed apparatuses for implementing the method and a computer readable storage medium stored with code thereon for implementing the method.
Abstract:
A data processing system is disclosed for machine learning. The system comprises a sampling module (13) and a computational module (15) interconnected by a data communications link (17). The computational module is configured to store a parameter vector representing an energy function of a network having a plurality of visible units connected using links to a plurality of hidden units, each link being a relationship between two units. The sampling module is configured to receive the parameter vector from the first processing module and to sample from the probability distribution defined by the parameter vector to produce state vectors for the network. The computational module is further configured to receive the state vectors from the second processing module and to apply an algorithm to produce new data. The sampling and computational modules are configured to operate independently from one another.
Abstract:
In accordance with an example embodiment of the present invention, there is provided an apparatus comprising a dual-rail encoder (120) configured to receive light from a light source and to output dual-rail encoded light, a combiner (130) configured to convert the dual-rail encoded light into polarization encoded light, and at least one processing core configured to obtain compensation adjustment information concerning a fibre (145) and to control the dual-rail encoder (120) based at least in part on the compensation adjustment information.