Abstract:
A computer system has a touch sensitive display screen within a housing and a touch sensor, which is coupled to a bus. A processor and a memory are coupled to the bus. The housing has a channel for receiving and storing a stylus. A sensor is disposed adjacent to the channel. The sensor interacts with the stylus through the Hall effect caused by a magnet within the stylus and is thus operable for detecting a presence or absence of the stylus without physical contact therewith. The memory has an application which, when executed on the processor, automatically performs one or more stylus related software functions upon a reported absence of the stylus from the channel. One of the software functions includes palm detection rejection with respect to data from the touch sensor. Another function includes display of a GUI displaying a listing of applications that are based on stylus data entry modes. Another function includes setting up OS modes designed for accurate operation of stylus data entry.
Abstract:
Embodiments of the present invention are directed to systems for improved touch screen user-input devices that combine the benefits of active and passive touch screen implementations. According to one or more embodiments of the present invention, a system is provided that includes a user input touch device (such as a stylus) that can be equipped with one or more tips of various sizes and shapes, and a touch screen input surface that is configured to detect each of the various tips. In contrast to prevailing conventional active stylus implementations, this allows touch screen implementations to use styluses with tips that simulate real-world artistic tools that are currently not available in digital arts media. Moreover, data obtained in the input device itself is communicated to the touch screen processor/controller to supplement the input data received in the touch screen device.
Abstract:
A method for reducing line display latency on a touchpad device is disclosed. The method comprises storing information regarding a plurality of prior touch events on a touch screen of the touchpad device into an event buffer. It further comprises determining an average speed and a predicted direction of motion of a user interaction with the touch screen using the plurality of prior touch events. Next, it comprises calculating a first prediction point using the average speed, the predicted direction, and a last known touch event on the touch screen. Subsequently, it comprises applying weighted filtering on the first prediction point using a measured line curvature to determine a second prediction point. Finally, it comprises rendering a prediction line between the last known touch event on the touch screen and the second prediction point.
Abstract:
A passive stylus with a deformable tip is described herein. In one embodiment, a thin annular body configured to be hand-held with a tip disposed at the first end of the body is provided. The tip includes a deformable material such that the tip is operable to interface with a touch a sensitive surface with a detectable surface area when a first pressure is exerted on the body and translated to the tip. The tip is operable to interface with the touch sensitive surface with a second detectable surface area, this one different from the first detectable surface area, when a second pressure is exerted on the body and translated to the tip. The stylus may include a second tip on the back end for providing an erase function.
Abstract:
The present disclosure provides various approaches for smart area monitoring suitable for parking garages or other areas. These approaches may include ROI-based occupancy detection to determine whether particular parking spots are occupied by leveraging image data from image sensors, such as cameras. These approaches may also include multi-sensor object tracking using multiple sensors that are distributed across an area that leverage both image data and spatial information regarding the area, to provide precise object tracking across the sensors. Further approaches relate to various architectures and configurations for smart area monitoring systems, as well as visualization and processing techniques. For example, as opposed to presenting video of an area captured by cameras, 3D renderings may be generated and played from metadata extracted from sensors around the area.
Abstract:
Embodiments of the present invention are capable of lowering touch scan rates in a manner that conserves power resources without compromising performance or user experience thereby promoting battery life. Embodiments of the present invention perform touch scan operations using a touch sensitive panel at a first scan rate. In response to certain events automatically detected within the mobile device (e.g., when a full-screen video is being displayed), embodiments of the present invention may then perform touch scan operations at a second scan rate that is slower than the first scan rate that also consumes less power compared to the first scan rate. As such, for events or use cases in which limited user interaction with the touch sensitive panel is typical, embodiments of the present invention may lower touch scan rates in a manner that still enables users to interact with applications (e.g., interaction with playback controls during video playback) and promotes efficient power usage and extends battery life.
Abstract:
A touch screen system includes a touch screen that provides touch information in response to a touch event. The touch screen system also includes a rapid response display controller having a reactive interpretation unit that provides an initial display representation of the touch information and a reactive feedback unit that provides the initial display representation to the touch screen for an initial display. The touch screen system further includes a routine response display controller that additionally receives the touch information and provides a final display representation of the touch information to the touch screen for a final display. A method of touch screen display management is also included.
Abstract:
The present disclosure provides various approaches for smart area monitoring suitable for parking garages or other areas. These approaches may include ROI-based occupancy detection to determine whether particular parking spots are occupied by leveraging image data from image sensors, such as cameras. These approaches may also include multi-sensor object tracking using multiple sensors that are distributed across an area that leverage both image data and spatial information regarding the area, to provide precise object tracking across the sensors. Further approaches relate to various architectures and configurations for smart area monitoring systems, as well as visualization and processing techniques. For example, as opposed to presenting video of an area captured by cameras, 3D renderings may be generated and played from metadata extracted from sensors around the area.
Abstract:
An aspect of the present invention proposes a solution to allow low-cost flat panel displays without light guides to maintain a high quality image display via enhancement of pixel data to account for non uniform brightness. According to one embodiment, each pixel of a display is mapped to the brightness (intensity) of illumination that reaches the pixel. Regional pixel gains are calculated and applied on a per pixel basis to compensate for the non-uniform brightness across the screen. According to such an embodiment, even low cost flat panel displays experiencing non-uniform brightness can be used to render high quality images.