Abstract:
A method for refreshing a display. The method includes refreshing even and odd columns of a display panel at a first frame refresh rate where for each frame, even and odd columns are refreshed. Upon entering a display idle period, a low power display refresh is performed. The low power display refresh includes: refreshing the even columns of the display during even frames while circuitry driving odd columns are not used, and refreshing the odd columns of the display during odd frames while circuitry driving the even columns are not used. Refreshing the even columns and refreshing the odd columns are performed at a second frame refresh rate that is slower than the first frame refresh rate.
Abstract:
A touch-screen input/output device including a touch sensor, a display, a display control module, a touch sensor control module and a synchronizer module. The touch sensor is overlaid on a display. The display control module is communicatively coupled to the display and converts video data into a serial bit stream video display signal including one or more blanking intervals. The touch sensor control module is communicatively coupled to the touch sensor and determines touch events and location of the touch event on the touch sensor during one or more touch sensor scan cycles. The synchronizer module is communicatively coupled between the display control module and the touch sensor control module, and interleaves the one or more touch sensor scan cycles with the one or more blanking intervals of the video display signal.
Abstract:
A touch-screen input/output device including a touch sensor, a display, a display control module, a touch sensor control module and a synchronizer module. The touch sensor is overlaid on a display. The display control module is communicatively coupled to the display and converts video data into a serial bit stream video display signal include one or more blanking intervals. The touch sensor control module is communicatively coupled to the touch sensor and determines touch events and location of the touch event on the touch sensor during one or more touch sensor scan cycles. The synchronizer module is communicatively coupled between the display control module and the touch sensor control module, and interleaves the one or more touch sensor scan cycles with the one or more blanking intervals of the video display signal.
Abstract:
A system, method, and computer program product are provided for a dynamic display refresh. In use, a state of a display device is identified in which an entirety of an image frame is currently displayed by the display device. In response to the identification of the state, it is determined whether an entirety of a next image frame to be displayed has been rendered to memory. The next image frame is transmitted to the display device for display thereof, when it is determined that the entirety of the next image frame to be displayed has been rendered to the memory. Further, a refresh of the display device is delayed, when it is determined that the entirety of the next image frame to be displayed has not been rendered to the memory.
Abstract:
A system, method, and computer program product are provided for distributed processing of overlapping portions of pixels. In use, a plurality of pixels to be processed utilizing a plurality of display processing modules across a plurality of interfaces are identified. Additionally, the pixels are apportioned into a plurality of overlapping portions of the pixels in accordance with a number of the display processing modules and display interfaces. Further, processing of the overlapping portions of the pixels is distributed across the display processing modules and the display interfaces in such way that the portions can be recombined into a single contiguous final image by a plurality display controllers.
Abstract:
A solution is proposed that allows power savings via enhancement of pixel data to compensate for reducing backlight intensity levels. According to one embodiment, each pixel of a display is sorted according to the brightness (intensity) of the pixel. Regional pixel gains are calculated and applied on a per pixel basis so as not to exceed a quality threshold. The intensity of the backlight corresponding to each region may be decreased by an equivalent amount, thereby reducing (potentially significantly) the power consumed to operate the backlight while maintaining the color intensity in the image due to the applied pixel gains.
Abstract:
Various embodiments relating to reducing memory bandwidth consumed by a continuous scan display screen are provided. In one embodiment, scoring criteria are applied to a reference image of a first image format having a first bit depth to generate an image conversion score. The scoring criteria are based on a histogram of one or more characteristics of the reference image. If the image conversion score is greater than a threshold value, then the reference image is converted to a modified image of a second image format having a second bit depth less than the first bit depth, and the modified image is scanned onto the continuous scan display screen. If the image conversion score is less than the threshold value, then the reference image is scanned onto the continuous scan display screen.
Abstract:
A solution is proposed that performs global histogramming of pre-regionally-enhanced pixel values accounting for inter-regional illumination contributions to verify that over-saturation of an image is prevented. According to an embodiment, pixel values that have been regionally enhanced—that is, with applied gains calculated for the respective regions—are further added to illumination values corresponding to the pixel values, with the resultant summed pixel values being histogrammed again to determine the amount of over-saturated pixels. An over-abundance of over-saturated pixels results in a calculation of a global modifier applied to each pixel to reduce the number of over-saturated pixels below an acceptable threshold.
Abstract:
Embodiments of the invention may include an apparatus that may include a graphics processor operable to generate video frames. Further, a screen refresh controller may be communicatively coupled with the graphics processor, wherein the screen refresh controller is operable to receive generated video frames from the graphics processor and send framelock signals to the graphics processor. In addition, a display device may be communicatively coupled with the screen refresh controller, wherein the display device is operable to receive and display video frames from the screen refresh controller.
Abstract:
A touch-screen input/output device including a touch sensor, a display, a display control module, a touch sensor control module and a synchronizer module. The touch sensor is overlaid on a display. The display control module is communicatively coupled to the display and converts video data into a serial bit stream video display signal include one or more blanking intervals. The touch sensor control module is communicatively coupled to the touch sensor and determines touch events and location of the touch event on the touch sensor during one or more touch sensor scan cycles. The synchronizer module is communicatively coupled between the display control module and the touch sensor control module, and interleaves the one or more touch sensor scan cycles with the one or more blanking intervals of the video display signal.