Abstract:
A computer-implemented method for drawing graphical objects within a graphics processing pipeline is disclosed. The method includes determining that a bypass mode for a first primitive is a no-bypass mode. The method further includes rasterizing the first primitive to generate a first set of rasterization results. The method further includes generating a first set of colors for the first set of rasterization results via a pixel shader unit. The method further includes rasterizing a second primitive to generate a second set of rasterization results. The method further includes generating a second set of colors for the second set of rasterization results without the pixel shader unit performing any processing operations on the second set of rasterization results. The method further includes transmitting the first set of pixel colors and the second set of pixel colors to a raster operations (ROP) unit for further processing.
Abstract:
One embodiment of the present invention includes a memory management unit (MMU) that is configured to manage sparse mappings. The MMU processes requests to translate virtual addresses to physical addresses based on page table entries (PTEs) that indicate a sparse status. If the MMU determines that the PTE does not include a mapping from a virtual address to a physical address, then the MMU responds to the request based on the sparse status. If the sparse status is active, then the MMU determines the physical address based on whether the type of the request is a write operation and, subsequently, generates an acknowledgement of the request. By contrast, if the sparse status is not active, then the MMU generates a page fault. Advantageously, the disclosed embodiments enable the computer system to manage sparse mappings without incurring the performance degradation associated with both page faults and conventional software-based sparse mapping management.
Abstract:
One embodiment sets forth a method for transforming 3-D images into 2-D rendered images using render target sample masks. A software application creates multiple render targets associated with a surface. For each render target, the software application also creates an associated render target sample mask configured to select one or more samples included in each pixel. Within the graphics pipeline, a pixel shader processes each pixel individually and outputs multiple render target-specific color values. For each render target, a ROP unit uses the associated render target sample mask to select covered samples included in the pixel. Subsequently, the ROP unit uses the render target-specific color value to update the selected samples in the render target, thereby achieving sample-level color granularity. Advantageously, by increasing the effective resolution using render target sample masks, the quality of the rendered image is improved without incurring the performance degradation associated with processing each sample individually.
Abstract:
One embodiment of the invention sets forth a CROP configured to perform both color raster operations and atomic transactions. Upon receiving an atomic transaction, the distribution unit within the CROP transmits a read request to the L2 cache for retrieving the destination operand. The distribution unit also transmits the source operands and the operation code to the latency buffer for storage until the destination operand is retrieved from the L2 cache. The processing pipeline transmits the operation code, the source and destination operands and an atomic flag to the blend unit for processing. The blend unit performs the atomic transaction on the source and destination operands based on the operation code and returns the result of the atomic transaction to the processing pipeline for storage in the internal cache. The processing pipeline writes the result of the atomic transaction to the L2 cache for storage at the memory location associated with the atomic transaction.
Abstract:
A graphics processing pipeline within a parallel processing unit (PPU) is configured to perform path rendering by generating a collection of graphics primitives that represent each path to be rendered. The graphics processing pipeline determines the coverage of each primitive at a number of stencil sample locations within each different pixel. Then, the graphics processing pipeline reduces the number of stencil samples down to a smaller number of color samples, for each pixel. The graphics processing pipeline is configured to modulate a given color sample associated with a given pixel based on the color values of any graphics primitives that cover the stencil samples from which the color sample was reduced. The final color of the pixel is determined by downsampling the color samples associated with the pixel.