Abstract:
A dual flip-flop circuit combines two or more flip-flip sub-circuits into a single circuit. The flip-flop circuit comprises a first flip-flop sub-circuit and a second flip-flop sub-circuit. The first flip-flop sub-circuit comprises a first storage sub-circuit configured to store a first selected input signal and transfer the first selected input signal to a first output signal when a buffered clock signal transitions between two different logic levels and a dock driver configured to receive a clock input signal, generate an inverted clock signal, and generate the buffered clock signal. The second flip-flop sub-circuit is coupled to the clock driver and configured to receive the inverted clock signal and the buffered clock signal. The second flip-flop sub-circuit comprises a second storage sub-circuit configured to store a second selected input signal and transfer the second selected input signal to a second output signal when the buffered clock signal transitions.
Abstract:
A scan flip-flop circuit comprises a scan input sub-circuit and a selection sub-circuit. The scan input sub-circuit is configured to receive a scan input signal and a scan enable signal and, when the scan enable signal is activated, generate complementary scan input signals representing the scan input signal that are delayed relative to a transition of a clock input signal between two different logic levels. The selection sub-circuit is coupled to the scan input sub-circuit and configured to receive the complementary scan input signals and, based on the scan enable signal, output an inverted version of either the scan input signal or a data signal as a first selected input signal.
Abstract:
A scan flip-flop circuit comprises a scan input sub-circuit and a selection sub-circuit. The scan input sub-circuit is configured to receive a scan input signal and a scan enable signal and, when the scan enable signal is activated, generate complementary scan input signals representing the scan input signal that are delayed relative to a transition of a clock input signal between two different logic levels. The selection sub-circuit is coupled to the scan input sub-circuit and configured to receive the complementary scan input signals and, based on the scan enable signal, output an inverted version of either the scan input signal or a data signal as a first selected input signal.
Abstract:
A dual flip-flop circuit combines two or more flip-flip sub-circuits into a single circuit. The flip-flop circuit comprises a first flip-flop sub-circuit and a second flip-flop sub-circuit. The first flip-flop sub-circuit comprises a first storage sub-circuit configured to store a first selected input signal and transfer the first selected input signal to a first output signal when a buffered clock signal transitions between two different logic levels and a dock driver configured to receive a clock input signal, generate an inverted clock signal, and generate the buffered clock signal. The second flip-flop sub-circuit is coupled to the clock driver and configured to receive the inverted clock signal and the buffered clock signal. The second flip-flop sub-circuit comprises a second storage sub-circuit configured to store a second selected input signal and transfer the second selected input signal to a second output signal when the buffered clock signal transitions.