Abstract:
Systems and methods for latches are presented. In one embodiment a system includes scan in propagation component, data propagation component, and control component. The scan in propagation component is operable to select between a scan in value and a recirculation value. The data propagation component is operable to select between a data value and results forwarded from the scan in propagation component, wherein results of the data propagation component are forwarded as the recirculation value to the scan in propagation component. The control component is operable to control an indication of a selection by the scan in propagation component and the data propagation component.
Abstract:
A static random access memory (SRAM) cell includes a storage unit configured to store a data bit in a storage node. The SRAM cell further includes an access unit coupled to the storage unit. The access unit is configured to transfer current to the storage node when a word line is asserted. The SRAM cell further includes a row header configured to provide current from a power supply when the word line is not asserted, and to not provide current from the power supply when the word line is asserted. The SRAM cell further includes a column header configured to provide current from a power supply when a write column line is not asserted, and to not provide current from the power supply when the write column line is asserted.
Abstract:
A scan flip-flop circuit comprises a scan input sub-circuit and a selection sub-circuit. The scan input sub-circuit is configured to receive a scan input signal and a scan enable signal and, when the scan enable signal is activated, generate complementary scan input signals representing the scan input signal that are delayed relative to a transition of a clock input signal between two different logic levels. The selection sub-circuit is coupled to the scan input sub-circuit and configured to receive the complementary scan input signals and, based on the scan enable signal, output an inverted version of either the scan input signal or a data signal as a first selected input signal.
Abstract:
One embodiment of the present invention sets forth a technique for technique for capturing and storing a level of an input signal using a dual-trigger low-energy flip-flop circuit that is fully-static and insensitive to fabrication process variations. The dual-trigger low-energy flip-flop circuit presents only three transistor gate loads to the clock signal and none of the internal nodes toggle when the input signal remains constant. One of the clock signals may be a low-frequency “keeper clock” that toggles less frequently than the other two clock signal that is input to two transistor gates. The output signal Q is set or reset at the rising clock edge using separate trigger sub-circuits. Either the set or reset may be armed while the clock signal is low, and the set or reset is triggered at the rising edge of the dock.
Abstract:
Low clocking power flip-flop. In accordance with a first embodiment of the present invention, a flip-flop electronic circuit includes a master latch coupled to a slave latch in a flip-flop configuration. The flip-flop electronic circuit also includes a clock control circuit for comparing an input to the master latch with an output of the slave latch, and responsive to the comparing, blocking a clock signal to the master latch and the slave latch when the flip-flop electronic circuit is in a quiescent condition.
Abstract:
Small area low power data retention flop. In accordance with a first embodiment of the present invention, a circuit includes a master latch coupled to a data retention latch. The data retention latch is configured to operate as a slave latch to the master latch to implement a master-slave flip flop during normal operation. The data retention latch is configured to retain an output value of the master-slave flip flop during a low power data retention mode when the master latch is powered down. A single control input is configured to select between the normal operation and the low power data retention mode. The circuit may be independent of a third latch.
Abstract:
A flip-flop circuit may include a master latch and a slave latch. Each latch may have a transparent mode and a storage mode. The slave latch may be in storage mode when the master latch is in transparent mode; and vice-versa. A clock signal may control the mode of each latch through a pair of clock-gated pull-up transistors and a pair clock-gated of pull-down transistors, for a total of four clock-gated transistors. The clock-gated transistors may be shared by the master latch and the slave latch. Fewer clock-gated transistors may be required when they are shared, as opposed to not being shared. Clock-gated transistors may have parasitic capacitance and consume power when subjected to a varying clock signal, due to the charging and discharging of the parasitic capacitance. Having fewer clock-gated transistors thus may reduce the power consumed by the flip-flop circuit.
Abstract:
A scan flip-flop circuit comprises a scan input sub-circuit and a selection sub-circuit. The scan input sub-circuit is configured to receive a scan input signal and a scan enable signal and, when the scan enable signal is activated, generate complementary scan input signals representing the scan input signal that are delayed relative to a transition of a clock input signal between two different logic levels. The selection sub-circuit is coupled to the scan input sub-circuit and configured to receive the complementary scan input signals and, based on the scan enable signal, output an inverted version of either the scan input signal or a data signal as a first selected input signal.
Abstract:
Provided herein is a voltage level shifter, an apparatus including a voltage level shifter and a method of converting voltages between input and output power domains. In one embodiment, the voltage level shifter includes: (1) an input circuit configured to receive a data signal from an input power domain and a power down signal from a output power domain and (2) a transition circuit coupled to the input circuit and configured to receive the data signal and an inverted signal of the power down signal, wherein the input circuit and the transition circuit are both configured to connect to a supply voltage of the output power domain as a power source.
Abstract:
A flip-flop element is configured to gate the clock inversions within a master-slave flip-flop element. The flip-flop element reduces the number of circuit elements within the flip-flop element by collapsing elements with common functionality into a single circuit element. Further, by making the actions of judiciously selected circuit elements conditional upon the state of the input data, the flip-flop element circuit reduces the number of internal transitions. In this manner, by reducing the number of circuit elements as well as the number of transitions, the flip-flop element achieves substantial reduction in overall system power consumption, resulting in a more efficient system.