TECHNIQUES FOR ORDERING ATOMIC OPERATIONS
    1.
    发明申请

    公开(公告)号:US20190235915A1

    公开(公告)日:2019-08-01

    申请号:US15881587

    申请日:2018-01-26

    Abstract: In various embodiments, an ordered atomic operation enables a parallel processing subsystem to executes an atomic operation associated with a memory location in a specified order relative to other ordered atomic operations associated with the memory location. A level 2 (L2) cache slice includes an atomic processing circuit and a content-addressable memory (CAM). The CAM stores an ordered atomic operation specifying at least a memory address, an atomic operation, and an ordering number. In operation, the atomic processing circuit performs a look-up operation on the CAM, where the look-up operation specifies the memory address. After the atomic processing circuit determines that the ordering number is equal to a current ordering number associated with the memory address, the atomic processing circuit executes the atomic operation and returns the result to a processor executing an algorithm. Advantageously, the ordered atomic operation enables the algorithm to achieve a deterministic result while optimizing latency.

    MULTI-PASS RENDERING IN A SCREEN SPACE PIPELINE

    公开(公告)号:US20170148204A1

    公开(公告)日:2017-05-25

    申请号:US14952400

    申请日:2015-11-25

    CPC classification number: G06T15/005 G06T11/40

    Abstract: A multi-pass unit interoperates with a device driver to configure a screen space pipeline to perform multiple processing passes with buffered graphics primitives. The multi-pass unit receives primitive data and state bundles from the device driver. The primitive data includes a graphics primitive and a primitive mask. The primitive mask indicates the specific passes when the graphics primitive should be processed. The state bundles include one or more state settings and a state mask. The state mask indicates the specific passes where the state settings should be applied. The primitives and state settings are interleaved. For a given pass, the multi-pass unit extracts the interleaved state settings for that pass and configures the screen space pipeline according to those state settings. The multi-pass unit also extracts the interleaved graphics primitives to be processed in that pass. Then, the multi-pass unit causes the screen space pipeline to process those graphics primitives.

    MULTI-PASS RENDERING IN A SCREEN SPACE PIPELINE

    公开(公告)号:US20170148203A1

    公开(公告)日:2017-05-25

    申请号:US14952390

    申请日:2015-11-25

    Abstract: A multi-pass unit interoperates with a device driver to configure a screen space pipeline to perform multiple processing passes with buffered graphics primitives. The multi-pass unit receives primitive data and state bundles from the device driver. The primitive data includes a graphics primitive and a primitive mask. The primitive mask indicates the specific passes when the graphics primitive should be processed. The state bundles include one or more state settings and a state mask. The state mask indicates the specific passes where the state settings should be applied. The primitives and state settings are interleaved. For a given pass, the multi-pass unit extracts the interleaved state settings for that pass and configures the screen space pipeline according to those state settings. The multi-pass unit also extracts the interleaved graphics primitives to be processed in that pass. Then, the multi-pass unit causes the screen space pipeline to process those graphics primitives.

    TECHNIQUES FOR REPRESENTING AND PROCESSING GEOMETRY WITHIN A GRAPHICS PROCESSING PIPELINE

    公开(公告)号:US20190236827A1

    公开(公告)日:2019-08-01

    申请号:US15881564

    申请日:2018-01-26

    Abstract: In various embodiments, a parallel processor implements a graphics processing pipeline that generates rendered images via a shading program. In operation, the parallel processor causes a first set of execution threads to execute the shading program on a first portion of the input mesh to generate first geometry stored in an on-chip memory. The parallel processor also causes a second set of execution threads to execute the mesh shading program on a second portion of the input mesh to generate second geometry stored in the on-chip memory. Subsequently, the parallel processor reads the first geometry and the second geometry from the on-chip memory, and performs operations on the first geometry and the second geometry to generate a rendered image derived from the input mesh. Advantageously, unlike conventional graphics processing pipelines, the performance of the graphics processing pipeline is not limited by a primitive distributor.

Patent Agency Ranking