Abstract:
Versions of a service not reachable by a set of service requestors that use the service are removed. Multiple, different versions of a service are stored, along with metadata associated with the multiple, different versions of the service. The metadata is examined to determine one or more of the multiple, different versions of the service that are not reachable by the set of service requestors that use the service. Those versions are deleted.
Abstract:
An approach is provided in which a distributed runtime environment executes a software application that includes isolated runtime constructs corresponding to an isolated runtime environment. During the execution, the distributed runtime environment identifies isolated runtime constructs included in the software application and selects distributed runtime constructs corresponding to the isolated runtime constructs. In turn, the distributed runtime environment executes the distributed runtime constructs in lieu of executing the isolated runtime constructs.
Abstract:
A method of locating an object across a network comprises locating the copy of object that is the best copy available through either JNDI object location and webservice location. The method initially comprises attempting to locate a local copy of the object (step 8). If a local copy of the object is not located, the method then attempts (step 10) to locate a remote copy of the object. If a remote copy of the object is not located, the method then attempts (step 12) to locate a remote web service object.
Abstract:
Systems and methods are disclosed for automatically generating and publishing API information for web services, and for informing a requestor for the web services of a correct format of the request. One embodiment comprises an API gateway that identifies a plurality of software code objects for deployment, where the code objects include executable code for performing functions. The API gateway receives a request for a web service from an application, queries a code object for usage information regarding a function to perform the web service, and determines that a format of the request for the web service is incorrect based on the query for the usage information. The API gateway transmits a response to the application that specifies a correct format of the web service request based on the query, and receives a subsequent request from the application that specifies the correct format for the web service request.
Abstract:
Improvements are provided in a service registry in SOA and in service propagation, query, and service selection and routing methods during service invocation. The service registry is connected with a local service domain and a remote service registry and comprises: a local service information manager for registering local services in the local service domain; and a local service information repository connected with the local service information manager for storing service metadata of the local services. The service registry further comprises: a remote service information manager connected with the local service information manager and the remote service registry for receiving a remote service index from the remote service registry; and a remote service information repository connected to the remote service information manager for storing the remote service index received from the remote service registry. The service registry makes it easy to realize service control and share among different service registries.
Abstract:
An object is developed using an operating system neutral application programming interface (API). The object is complied for a designated operating system that includes native objects and supports an API for accessing native objects of the operating system. The compiled object includes logic code, a native object interop for accessing the logic code using the API for accessing native objects of the operating system, and a platform-neutral interop for accessing the logic code using the operating system neutral API.
Abstract:
A method of locating an object across a network comprises locating the copy of object 5 that is the best copy available through either JNDI object location and webservice location. In one advantageous embodiment, the method initially comprises attempting to locate a local copy of the object (step 8). If a local copy of the object is not located, the method 10 then attempts (step 10) to locate a remote copy of the object. If a remote copy of the object is not located, the method then attempts (step 12) to locate a remote web service object.
Abstract:
Techniques are described for assisting users in dynamically creating and using composite services that are based on other constituent services. In some situations, each constituent service is a Web service (“WS”), and each composite service is a new WS whose execution involves dynamically invoking multiple specified constituent WSes in a specified manner. Such techniques may be used, for example, in conjunction with an electronic WS marketplace via which third-party WS providers make their WSes available to third-party WS consumers who locate and purchase access to those WSes, such as to allow a user to dynamically create a new composite WS that is based on one or more WSes available from other WS providers and that reflects any constraints of the WS marketplace, with the composite WS available for use by other WS consumers. This abstract is not intended for use in interpreting or limiting the scope of the claims.
Abstract:
A method for registering a network application with an application programming interface (API) framework. In operation, a registrar may send a registration message that associates a namespace with the network application to the API framework. In one implementation, the namespace associated with the network application may be a uniform resource identifier. In another implementation, the registration message may specify a format of the standardized clients, a security policy, and the application resources associated with the network application.
Abstract:
Some embodiments are associated with a business information enterprise system having a front-end and a back-end. Moreover, it may be determined that a first object access display (e.g., an open or save dialog box) is to be provided at the front-end for a first type of object. A generic interface between the front-end and the back-end may then be used to provide the first object access display with a first object view based on the first object type. It may also be determined that a second object access display is to be provided at the front-end for a second type of object. In this case, the generic interface may be used to provide the second object access display with a second object view based on the second object type.