摘要:
Embodiments of the present invention generally relates to apparatus for use in film depositions. The apparatus generally include pre-heat rings adapted to be positioned in a processing chamber. In one embodiment, a pre-heat ring includes a ring having an inner edge and an outer edge. The outer edge has a constant radius. The inner edge is oblong-shaped and may have a first portion having a constant radius measured from a center of a circle defined by an outer circumference of the ring. A second portion may have a constant radius measured from a location other than the center of the outer circumference. In another embodiment, a processing chamber includes a pre-heat ring positioned around the periphery of a substrate support. The pre-heat ring includes an inner edge having a first portion, a second portion, and one or more linear portions positioned between the first portion and the second portion.
摘要:
Embodiments of the present invention generally relates to apparatus for use in film depositions. The apparatus generally include pre-heat rings adapted to be positioned in a processing chamber. In one embodiment, a pre-heat ring includes a ring having an inner edge and an outer edge. The outer edge has a constant radius. The inner edge is oblong-shaped and may have a first portion having a constant radius measured from a center of a circle defined by an outer circumference of the ring. A second portion may have a constant radius measured from a location other than the center of the outer circumference. In another embodiment, a processing chamber includes a pre-heat ring positioned around the periphery of a substrate support. The pre-heat ring includes an inner edge having a first portion, a second portion, and one or more linear portions positioned between the first portion and the second portion.
摘要:
Embodiments of the present invention generally relate to methods of forming epitaxial layers and devices having epitaxial layers. The methods generally include forming a first epitaxial layer including phosphorus and carbon on a substrate, and then forming a second epitaxial layer including phosphorus and carbon on the first epitaxial layer. The second epitaxial layer has a lower phosphorus concentration than the first epitaxial layer, which allows for selective etching of the second epitaxial layer and undesired amorphous silicon or polysilicon deposited during the depositions. The substrate is then exposed to an etchant to remove the second epitaxial layer and undesired amorphous silicon or polysilicon. The carbon present in the first and second epitaxial layers reduces phosphorus diffusion, which allows for higher phosphorus doping concentrations. The increased phosphorus concentrations reduce the resistivity of the final device. The devices include epitaxial layers having a resistivity of less than about 0.381 milliohm-centimeters.
摘要:
Embodiments of the present invention generally relate to methods of forming epitaxial layers and devices having epitaxial layers. The methods generally include forming a first epitaxial layer including phosphorus and carbon on a substrate, and then forming a second epitaxial layer including phosphorus and carbon on the first epitaxial layer. The second epitaxial layer has a lower phosphorus concentration than the first epitaxial layer, which allows for selective etching of the second epitaxial layer and undesired amorphous silicon or polysilicon deposited during the depositions. The substrate is then exposed to an etchant to remove the second epitaxial layer and undesired amorphous silicon or polysilicon. The carbon present in the first and second epitaxial layers reduces phosphorus diffusion, which allows for higher phosphorus doping concentrations. The increased phosphorus concentrations reduce the resistivity of the final device. The devices include epitaxial layers having a resistivity of less than about 0.381 milliohm-centimeters.
摘要:
Embodiments of the present invention generally relate to methods for forming silicon epitaxial layers on semiconductor devices. The methods include forming a silicon epitaxial layer on a substrate at increased pressure and reduced temperature. The silicon epitaxial layer has a phosphorus concentration of about 1×1021 atoms per cubic centimeter or greater, and is formed without the addition of carbon. A phosphorus concentration of about 1×1021 atoms per cubic centimeter or greater increases the tensile strain of the deposited layer, and thus, improves channel mobility. Since the epitaxial layer is substantially free of carbon, the epitaxial layer does not suffer from film formation and quality issues commonly associated with carbon-containing epitaxial layers.
摘要:
Embodiments of the present invention generally relate to methods for forming silicon epitaxial layers on semiconductor devices. The methods include forming a silicon epitaxial layer on a substrate at increased pressure and reduced temperature. The silicon epitaxial layer has a phosphorus concentration of about 1×1021 atoms per cubic centimeter or greater, and is formed without the addition of carbon. A phosphorus concentration of about 1×1021 atoms per cubic centimeter or greater increases the tensile strain of the deposited layer, and thus, improves channel mobility. Since the epitaxial layer is substantially free of carbon, the epitaxial layer does not suffer from film formation and quality issues commonly associated with carbon-containing epitaxial layers.
摘要:
In a method of producing ultra-thin graphitic layers, a carbide crystal is placed into a graphitic enclosure. The carbide crystal and the graphitic enclosure are placed into a chamber. The carbide crystal and the graphitic enclosure are subjected to a predetermined environment. Once the predetermined environment is established, the carbide crystal and the graphitic enclosure are heated to a first temperature for a predetermined period of time sufficient to cause at least one non-carbon element to evaporate from a crystal face of the carbide crystal so as to form at least one graphitic layer on the crystal face of the carbide crystal.
摘要:
In a method of producing ultra-thin graphitic layers, a carbide crystal is placed into a graphitic enclosure. The carbide crystal and the graphitic enclosure are placed into a chamber. The carbide crystal and the graphitic enclosure are subjected to a predetermined environment. Once the predetermined environment is established, the carbide crystal and the graphitic enclosure are heated to a first temperature for a predetermined period of time sufficient to cause at least one non-carbon element to evaporate from a crystal face of the carbide crystal so as to form at least one graphitic layer on the crystal face of the carbide crystal.