摘要:
Spatial pilot to support MIMO receivers in a multi-antenna and multi-layer transmission communication system. A first layer pilot for a single layer transmission is repeated across subbands in a first OFDM symbol and the first layer pilot is also repeated offset from the first OFDM symbol in an adjacent second OFDM symbol. Additional transmission layers may also be transmitted each include a separate pilot generated and repeated in the first symbol and repeated offset form the separate pilot in an adjacent second symbol. The first and second OFDM symbols are then transmitted and received to characterize the receive channels.
摘要:
Techniques for efficiently sending and receiving data in a wireless communication system are described herein. The techniques utilize a slot structure that is backward compatible with existing design. The techniques include sending and receiving forward link packets that occupy less than a full slot of the slot structure. An output waveform, which includes at least one slot, is generated at an access point. Each slot is segmented into two half-slots, wherein at least one half-slot includes a data unit of a packet. At a terminal, the output waveform is received and processed to extract the data unit and the data unit is processed to determine whether it is accurate. The terminal also generates ACK/NACK information in response to the results of processing the data unit and transmits channel information including the ACK/NACK information. The access point interprets the ACK/NACK information to determine if the data unit should be resent.
摘要:
Spatial pilot to support MIMO receivers in a multi-antenna and multi-layer transmission communication system. A first layer pilot for a single layer transmission is repeated across subbands in a first OFDM symbol and the first layer pilot is also repeated offset from the first OFDM symbol in an adjacent second OFDM symbol. Additional transmission layers may also be transmitted each include a separate pilot generated and repeated in the first symbol and repeated offset form the separate pilot in an adjacent second symbol. The first and second OFDM symbols are then transmitted and received to characterize the receive channels.
摘要:
Techniques for efficiently sending and receiving data in a wireless communication system are described herein. The techniques utilize a slot structure that is backward compatible with existing design. The techniques include sending and receiving forward link packets that occupy less than a full slot of the slot structure. An output waveform, which includes at least one slot, is generated at an access point. Each slot is segmented into two half-slots, wherein at least one half-slot includes a data unit of a packet. At a terminal, the output waveform is received and processed to extract the data unit and the data unit is processed to determine whether it is accurate. The terminal also generates ACK/NACK information in response to the results of processing the data unit and transmits channel information including the ACK/NACK information. The access point interprets the ACK/NACK information to determine if the data unit should be resent.
摘要:
A data-optimized communication system provides support for legacy access terminals, such as access terminals operating under the 1xEV-DO standard. The system also supports multiple-input multiple-output (MIMO) communications with access terminals configured to support MIMO. A number of MIMO spatial signatures are predefined or negotiated. MIMO rank and an identifier of the spatial signature determined at the MIMO access terminal are sent on the I-Branch and Q-Branch of the existing 1xEV-DO structure. In one embodiment, 1-bit rank and 3-bit spatial signature are transmitted through the I-Branch as a 4-bit symbol, replacing the data rate control (DRC) channel. In another embodiment, a 4-bit spatial signature is transmitted through the I-Branch, also replacing the DRC channel. A 2-bit rank is transmitted together with a 4-bit DRC channel through the Q-Branch. The 2-bit rank and the DRC channel can be distinguished because they are sent using different orthogonal codeword Walsh covers.
摘要:
A data-optimized communication system provides support for legacy access terminals, such as access terminals operating under the 1xEV-DO standard. The system also supports multiple-input multiple-output (MIMO) communications with access terminals configured to support MIMO. A number of MIMO spatial signatures are predefined or negotiated. MIMO rank and an identifier of the spatial signature determined at the MIMO access terminal are sent on the I-Branch and Q-Branch of the existing 1xEV-DO structure. In one embodiment, 1-bit rank and 3-bit spatial signature are transmitted through the I-Branch as a 4-bit symbol, replacing the data rate control (DRC) channel. In another embodiment, a 4-bit spatial signature is transmitted through the I-Branch, also replacing the DRC channel. A 2-bit rank is transmitted together with a 4-bit DRC channel through the Q-Branch. The 2-bit rank and the DRC channel can be distinguished because they are sent using different orthogonal codeword Walsh covers.
摘要:
A method of wireless communication includes configuring a virtual SRS (sounding reference signal) transmission to prompt a user equipment (UE) to use a shortened uplink transmission format to create a silent period at an end of a subframe. Reports are received from the UE indicating interference observed during the silent period.
摘要:
Certain aspects of the present disclosure provide methods and apparatus related to various considerations for using systems comprising user equipment (UE) relays. One method generally includes receiving, at a UE functioning as a relay, data from a first apparatus; and relaying the received data to a second apparatus, wherein the relaying does not involve interpreting or altering security features of the received data.
摘要:
Techniques are provided for control signaling and channel selection in cognitive Long Term Evolution (LTE). In one example, there is provided a method, operable by a mobile entity, that involves receiving, on a licensed channel, broadcasted channel usage information regarding at least one unlicensed channel used by one or more network nodes. The method further involves: performing a cell search procedure based at least in part on the channel usage information to select a given network node among the one or more network nodes; determining at least one random access parameter to be used in establishing wireless communication with the given network node, the at least one random access parameter being associated with a characteristic of the user device and determining a preferred downlink channel.
摘要:
Techniques for sending signaling for data transmission in a wireless communication system are described. A transmitter may process signaling for a data transmission based on a block code, a convolutional code, a transformation, etc. The signaling may comprise an identifier of an intended receiver for the data transmission and/or other information such as data rate, resource assignment, etc. The signaling for the data transmission may be mapped to a first set of tones in a time slot. Data for the data transmission may be mapped to a second set of tones in the time slot. The entire signaling may be sent on the first set of tones. Alternatively, the first set of tones may be selected from among multiple sets of tones or pseudo-randomly selected from among available tones based on a first part of the signaling. A second part of the signaling may be sent on the first set of tones.