摘要:
A scanning backlight unit (BU) for a matrix display comprises a plurality of light sources (L1, . . . , Ln). A driver (2) supplies drive signals (D1, . . . , Dn) to the light sources (L1, . . . , Ln). A controller (3) controls the driver (2) to separately activate the light sources (L1, . . . , Ln) to obtain light-emitting regions (5) being active. A light sensor (4) is associated with a group of at least two of the light sources (L1, . . . , Ln) to supply a sensor signal (SES) which indicates a luminance (LU) of the group. The controller (3) reads the sensor signal (SES) at different instants (ts1, . . . , tsn) at which mutually different subsets of the light sources (L1, . . . , Ln) of the group are active to control the driver (2) to supply power levels to the light sources (L1, . . . , Ln) of the group to obtain a luminance (LU1, . . . , LUn) of each one of the light sources (L1, . . . , Ln) of the group in dependence on the sensor signal (SES).
摘要:
A scanning backlight unit (BU) for a matrix display comprises a plurality of light sources (L1, . . . , Ln). A driver (2) supplies drive signals (D1, . . . , Dn) to the light sources (L1, . . . , Ln). A controller (3) controls the driver (2) to separately activate the light sources (L1, . . . , Ln) to obtain light-emitting regions (5) being active. A light sensor (4) is associated with a group of at least two of the light sources (L1, . . . , Ln) to supply a sensor signal (SES) which indicates a luminance (LU) of the group. The controller (3) reads the sensor signal (SES) at different instants (ts1, . . . , tsn) at which mutually different subsets of the light sources (L1, . . . , Ln) of the group are active to control the driver (2) to supply power levels to the light sources (L1, . . . , Ln) of the group to obtain a luminance (LU1, . . . , LUn) of each one of the light sources (L1, . . . , Ln) of the group in dependence on the sensor signal (SES).
摘要:
Supply circuits for supplying voltage and current signals to light sources (6) comprise switches (22, 32, 42, 52) and controllers (21, 31, 41, 51) to control the switches (22, 32, 42, 52) for reducing values of frequency components of harmonic content of power spectra of the light sources (6). By switching one of the voltage and current signals or by switching signals that result in one of the voltage and current signals, the other one of the voltage and current signals can be adjusted. The power spectrum of the light source (6) may be a function of the voltage and current signals. By adjusting one of them, the power spectrum can be adjusted such that values of frequency components of the harmonic content of the power spectrum are reduced. As a result, visible flicker is reduced in the light originating from the light source (6) without the use of energy storage capacitors for reducing this visible flicker.
摘要:
Supply circuits for supplying voltage and current signals to light sources (6) comprise switches (22, 32, 42, 52) and controllers (21, 31, 41, 51) to control the switches (22, 32, 42, 52) for reducing values of frequency components of harmonic content of power spectra of the light sources (6). By switching one of the voltage and current signals or by switching signals that result in one of the voltage and current signals, the other one of the voltage and current signals can be adjusted. The power spectrum of the light source (6) may be a function of the voltage and current signals. By adjusting one of them, the power spectrum can be adjusted such that values of frequency components of the harmonic content of the power spectrum are reduced. As a result, visible flicker is reduced in the light originating from the light source (6) without the use of energy storage capacitors for reducing this visible flicker.
摘要:
The present invention relates to a bidirectional semiconductor switch (M1, M2) with extremely low control power consumption and a bootstrap circuit which allows reliable start of operation of the switch and the hosting device after unlimited duration of mains interruptions. Intelligent control options are provided by operating from a small energy storage and no extra means are required to recover from a depleted energy storage condition. The absence of audible noise and mechanical wear also enables more frequent recharging cycles and allows smaller and thus cheaper energy storage components.
摘要:
Ignition of a gas discharge lamp 10, which has a gas containing main space and two inner electrodes, of a lighting unit 4 of a lighting system is achieved by the use of a high frequency resonance circuit. The resonance circuit is connected to the inner electrodes and to a supply device 2, which supplies an alternating supply voltage. An outer electrode 22 is arranged near one the inner electrodes and to a node of the resonance circuit. Upon supplying the supply voltage a high voltage alternating burst will be generated at the outer electrode. This will result into a discharge of the gas in the main space. In turn, this will induce a discharge of the remaining gas. Then the frequency of the supply voltage will increase and a small reactive current only will remain to flow through the resonance circuit.
摘要:
The invention relates to a standby circuit, an electrical device with a standby circuit, a method for the control of the electrical device and a power supply assembly. Whereas the power supply unit and the control electronics are in permanent operation when conventional devices are in the standby mode and consequently have a high power consumption, the invention proposes a solution for saving energy while retaining convenience of operation by which the power supply unit is switched off in the standby mode. A standby circuit, preferably fed by an energy buffer element, remains active in the standby mode and monitors signal inputs for activation events. When an activation event occurs, the standby circuit switches on the power supply unit.
摘要:
An electronic circuit for operating a High Intensity Discharge (HID) lamp, in particular a Ultra High Pressure (UHP) lamp, such as those preferably used in image projectors. The circuit comprises a lamp ballast for offering a controlled lamp current for operating the HID lamp and a brightness sensor for generating and providing a sensor signal which represents the brightness of the light applied by the lamp to the image generator. The lamp ballast controls the lamp current such that the brightness of the light of the lamp remains constant. Brightness control is made possible throughout the entire operational life of the lamp, and the use of sensors of simple construction is made possible by an incorporation within the electric circuit of a filter that high-pass filters the sensor signal before it is supplied as a control signal to the lamp ballast.
摘要:
The present invention relates to a bidirectional semiconductor switch (M1, M2) with extremely low control power consumption and a bootstrap circuit which allows reliable start of operation of the switch and the hosting device after unlimited duration of mains interruptions. Intelligent control options are provided by operating from a small energy storage and no extra means are required to recover from a depleted energy storage condition. The absence of audible noise and mechanical wear also enables more frequent recharging cycles and allows smaller and thus cheaper energy storage components.
摘要:
Ignition of a gas discharge lamp 10, which has a gas containing main space and two inner electrodes, of a lighting unit 4 of a lighting system is achieved by the use of a high frequency resonance circuit. The resonance circuit is connected to the inner electrodes and to a supply device 2, which supplies an alternating supply voltage. An outer electrode 22 is arranged near one the inner electrodes and to a node of the resonance circuit. Upon supplying the supply voltage a high voltage alternating burst will be generated at the outer electrode. This will result into a discharge of the gas in the main space. In turn, this will induce a discharge of the remaining gas. Then the frequency of the supply voltage will increase and a small reactive current only will remain to flow through the resonance circuit.