Abstract:
An optical method for identifying locations of objects in a plane, including serially projecting light beams along a detection area, from a plurality of locations along an edge of the detection area, whereby a reflective object inserted into the detection area reflects the projected light beams, directing the reflections of the projected light beams arriving at the edge of the detection area onto a plurality of light detectors, in a manner that maximizes amounts of reflected light arriving at the detectors when the light arrives at a particular angle in relation to the edge, and calculating two-dimensional coordinates of the inserted object in the detection area based on the particular angle and the outputs of the detectors.
Abstract:
A proximity sensor, including a housing, an array of lenses mounted in the housing, an array of alternating light emitters and light detectors mounted in the housing, each detector being positioned along the image plane of a respective one of the lenses so as to receive maximum light intensity when light enters the lens at a particular angle, an activating unit mounted in the housing and connected to the emitters and detectors, synchronously co-activating each emitter with at least one of the detectors, each activated emitter projecting light out of the housing along a detection plane, and a processor receiving outputs from the detectors corresponding to amounts of projected light reflected by an object in the detection plane to the detectors, and calculating a two-dimensional location of the object in the detection plane based on the detector outputs and the particular angle.
Abstract:
Activating a plurality of light emitters and light detectors around a screen, each emitter-detector pair corresponding to a light path crossing the screen, wherein some of the light paths are blocked when one or more objects touch the screen, providing a look-up table, listing, for each cell from a plurality of cells, those light paths that traverse that cell when no object is touching the screen, wherein the cells partition the screen, for each cell: accessing the look-up table to identify those light paths that traverse that cell, determining whether the thus-identified light paths are blocked during the activating and, if affirmative, recognizing that cell as being a touched cell, and combining adjacent touched cells into a common touch location, thereby calculating one or more touch locations wherein each touch location is a combination of one or more constituent touched cells.
Abstract:
A sensor, including light emitters projecting directed light beams, light detectors interleaved with the light emitters, lenses, each lens oriented relative to a respective one of the light detectors such that the light detector receives maximum intensity when light enters the lens at an angle b, whereby, for each emitter E, there exist corresponding target positions p(E, D) along the path of the light from emitter E, at which an object located at any of the target positions reflects the light projected by emitter E towards a respective one of detectors D at angle b, and a processor storing a reflection value R(E, D) for each co-activated emitter-detector pair (E, D), based on an amount of light reflected by an object located at p(E, D) and detected by detector D, and calculating a location of an object based on the reflection values and target positions.
Abstract:
A proximity sensor, including a housing, an array of lenses mounted in the housing, an array of alternating light emitters and light detectors mounted in the housing, each detector being positioned along the image plane of a respective one of the lenses so as to receive maximum light intensity when light enters the lens at a particular angle, an activating unit mounted in the housing and connected to the emitters and detectors, synchronously co-activating each emitter with at least one of the detectors, each activated emitter projecting light out of the housing along a detection plane, and a processor receiving outputs from the detectors corresponding to amounts of projected light reflected by an object in the detection plane to the detectors, and calculating a two-dimensional location of the object in the detection plane based on the detector outputs and the particular angle.
Abstract:
A system including two handheld electronic devices, each device including a housing, a communicator mounted in the housing continuously receiving images from an internet server, a display mounted in the housing, and a sensor mounted in the housing and connected to the communicator, configured to detect sizes of objects in an adjacent detection zone, and including an analyzer recognizing the other handheld electronic device when the sensor detects that an object in the adjacent detection zone is as long as an edge of the housing, wherein the server receives outputs from the analyzer and partitions each of the images into two half-images, and continuously transmits one of each half-image to the handheld electronic device and the other of each half-image to the other handheld device, such that each full image spans the two device displays.
Abstract:
A sensor for a control panel, including a housing along an edge of the panel, light emitters projecting light along an in-air detection plane over the panel and detectors detecting reflections of the projected light, reflected by an object in the detection plane, lenses oriented such that each detector receives maximum light intensity when light enters a corresponding lens at a particular angle, whereby for each emitter-detector pair, when the object is located at a specific position in the detection plane, light emitted by the emitter of that pair is reflected by the object back through one of the lenses at the particular angle to the detector of that pair, the specific position being associated with that emitter-detector pair, and a processor configured to determine panel locations, map each location to a position in the detection plane associated with an emitter-detector pair, mapping the panel to the detection plane.
Abstract:
Method including providing a sensor including light emitters, photodiode detectors, and lenses arranged so as to direct light beams from light emitters exiting lenses along a detection plane, and so as to direct light beams entering lenses at a specific angle of incidence onto photodiode detectors, mounting the sensor on a display presenting virtual input controls for an electronic device, such that the detection plane resides in an airspace in front of the display, activating light emitters to project light beams through lenses along the detection plane, wherein at least one of the light beams is interrupted by a finger, detecting light reflected by the finger, identifying emitters that projected the light beam that was reflected and photodiode detectors that detected the reflected light, as emitter-detector pairs, calculating display coordinates based on target positions associated with the identified emitter-detector pairs, and transmitting the calculated display coordinates to the electronic device.
Abstract:
A proximity sensor including a housing, light emitters mounted in the housing for projecting light out of the housing along a detection plane, light detectors mounted in the housing for detecting amounts of light entering the housing along the detection plane, whereby for each emitter-detector pair (E, D), when an object is located at a target position p(E, D) in the detection plane, corresponding to the pair (E, D), then the light emitted by emitter E is scattered by the object and is expected to be maximally detected by detector D, and a processor to synchronously activate emitter-detector pairs, to read the detected amounts of light from the detectors, and to calculate a location of the object in the detection plane from the detected amounts of light, in accordance with a detection-location relationship that relates detections from emitter-detector pairs to object locations between neighboring target positions in the detection plane.
Abstract:
A proximity sensor including a housing, a plurality of light pulse emitters for projecting light out of the housing along a detection plane, a plurality of primary light detectors for detecting reflections of the light projected by the emitters, by a reflective object in the detection plane, a plurality of primary lenses oriented relative to the emitters and primary detectors in such a manner that for each emitter-detector pair, light emitted by the emitter of that pair passes through one of the primary lenses and is reflected by the object back through one of the primary lenses to the detector of that pair when the object is located at a position, from among a primary set of positions in the detection plane, that position being associated with that emitter-detector pair, and a processor for co-activating emitter-detector pairs, and configured to calculate a location of the object in the detection plane.