摘要:
In a particular illustrative embodiment, a method of determining a viewpoint of a person based on skin color area and face area is disclosed. The method includes receiving image data corresponding to an image captured by a camera, the image including at least one object to be displayed at a device coupled to the camera. The method further includes determining a viewpoint of the person relative to a display of the device coupled to the camera. The viewpoint of the person may be determined by determining a face area of the person based on a determined skin color area of the person and tracking a face location of the person based on the face area. One or more objects displayed at the display may be moved in response to the determined viewpoint of the person.
摘要:
Embodiments include methods and systems which determine pixel displacement between frames based on a respective weighting-value for each pixel or a group of pixels. The weighting-values provide an indication as to which pixels are more pertinent to optical flow computations. Computational resources and effort can be focused on pixels with higher weights, which are generally more pertinent to optical flow determinations.
摘要:
A three dimensional (3D) mixed reality system combines a real 3D image or video, captured by a 3D camera for example, with a virtual 3D image rendered by a computer or other machine to render a 3D mixed-reality image or video. A 3D camera can acquire two separate images (a left and a right) of a common scene, and superimpose the two separate images to create a real image with a 3D depth effect. The 3D mixed-reality system can determine a distance to a zero disparity plane for the real 3D image, determine one or more parameters for a projection matrix based on the distance to the zero disparity plane, render a virtual 3D object based on the projection matrix, combine the real image and the virtual 3D object to generate a mixed-reality 3D image.
摘要:
Embodiments include methods and systems which determine pixel displacement between frames based on a respective weighting-value for each pixel or a group of pixels. The weighting-values provide an indication as to which pixels are more pertinent to optical flow computations. Computational resources and effort can be focused on pixels with higher weights, which are generally more pertinent to optical flow determinations.
摘要:
In general, this disclosure describes techniques for providing a gesture-based user interface. For example, according to some aspects of the disclosure, a user interface generally includes a camera and a computing device that identifies and tracks the motion of one or more fingertips of a user. In some examples, the user interface is configured to identify predefined gestures (e.g., patterns of motion) associated with certain motions of the user's fingertips. In another example, the user interface is configured to identify hand postures (e.g., patterns of showing up of fingertips). Accordingly, the user can interact with the computing device by performing the gestures.
摘要:
This disclosure describes an apparatus, such as a wireless communication device, that applies a direct evaluation technique to render triangles for the 3D graphical environment. The apparatus includes a rendering engine that defines a rectangular area of pixels, referred to as a bounding box, that bounds the area to be rendered. The rendering engine evaluates coordinates associated with the pixels of the rectangular area to selectively render those pixels that fall within the triangular area. The direct evaluation triangle rendering algorithm may require fewer complex operations than the more computationally intensive interpolation process employed by other systems. As a result, the apparatus may present a 3D graphical environment while preserving as much as possible the available power.
摘要:
This disclosure describes an apparatus, such as a wireless communication device, that applies a direct evaluation technique to render triangles for the 3D graphical environment. The apparatus includes a rendering engine that defines a rectangular area of pixels, referred to as a bounding box, that bounds the area to be rendered. The rendering engine evaluates coordinates associated with the pixels of the rectangular area to selectively render those pixels that fall within the triangular area. The direct evaluation triangle rendering algorithm may require fewer complex operations than the more computationally intensive interpolation process employed by other systems. As a result, the apparatus may present a 3D graphical environment while preserving as much as possible the available power.
摘要:
A method and system that combines voice recognition engines and resolves any differences between the results of individual voice recognition engines. A speaker independent (SI) Hidden Markov Model (HMM) engine, a speaker independent Dynamic Time Warping (DTW-SI) engine and a speaker dependent Dynamic Time Warping (DTW-SD) engine are combined. Combining and resolving the results of these engines results in a system with better recognition accuracy and lower rejection rates than using the results of only one engine.
摘要:
The techniques of this disclosure are directed to the feedback-based stereoscopic display of three-dimensional images, such as may be used for video telephony (VT) and human-machine interface (HMI) application. According to one example, a region of interest (ROI) of stereoscopically captured images may be automatically determined based on determining disparity for at least one pixel of the captured images are described herein. According to another example, a zero disparity plane (ZDP) for the presentation of a 3D representation of stereoscopically captured images may be determined based on an identified ROI. According to this example, the ROI may be automatically identified, or identified based on receipt of user input identifying the ROI.
摘要:
The techniques of this disclosure are directed to the feedback-based stereoscopic display of three-dimensional images, such as may be used for video telephony (VT) and human-machine interface (HMI) application. According to one example, a region of interest (ROI) of stereoscopically captured images may be automatically determined based on determining disparity for at least one pixel of the captured images are described herein. According to another example, a zero disparity plane (ZDP) for the presentation of a 3D representation of stereoscopically captured images may be determined based on an identified ROI. According to this example, the ROI may be automatically identified, or identified based on receipt of user input identifying the ROI.