摘要:
An antireflective structure having a higher antireflective effect compared with those of conventional antireflective structures is produced by a simple process. The antireflective structure (10) includes a plurality of concavities (2a) each having a plurality of convexities (1a) thereon, and a pitch between the plurality of convexities (1a) and a pitch between the plurality of concavities (2a) are smaller than a wavelength of light incident to the antireflective structure (10).
摘要:
An antireflective structure having a higher antireflective effect compared with those of conventional antireflective structures is produced by a simple process. The antireflective structure (10) includes a plurality of concavities (2a) each having a plurality of convexities (1a) thereon, and a pitch between the plurality of convexities (1a) and a pitch between the plurality of concavities (2a) are smaller than a wavelength of light incident to the antireflective structure (10).
摘要:
A heating cooking device 1 includes: a heating unit 5 which heats an object to be heated C; an electromagnetic wave generation unit 15 which radiates electromagnetic waves E having a frequency of 100 GHz to 120 THz towards the object to be heated C for determining a cooking state of the object to be heated C; an electromagnetic wave detection unit 16 which detects the electromagnetic waves E radiated by the electromagnetic wave generation unit 15; and a CPU 13 which determines a cooking state of the object to be heated C based on a signal output by the electromagnetic wave detection unit 16 which detects the electromagnetic waves E. The heating cooking device 1 detects the electromagnetic waves E, an intensity of which is changed by striking the object to be heated C and determine the cooking state of the object to be heated C.
摘要:
Incident light can be efficiently converted into near-field light whose spot size is small. A waveguide 10 includes: a metallic member 11 made of a metallic material; and a dielectric member 12 made of a dielectric material. The metallic member 11 includes a first interface 16 and a second interface 18 so as to sandwich the dielectric member 12. The first interface and the second interface are provided so that an inter-interface distance therebetween may decrease from ends 16c and 18c to ends 16d and 18d. The first interface 16 and the second interface 18 have flections P16 and P18, respectively.
摘要:
Provided are a filter unit 4 in which a plurality of metallic particles 42 having two or more anisotropic axes are disposed with uniform orientations on a surface or interior part of a transparent dielectric medium 41 transmitting visible light, and direction adjusting means 3 for changing, in a relative manner, the polarization of incident light, which incident on the filter unit with linear polarization, and the orientation of the anisotropic axes of the metallic particles 42.
摘要:
A recording/reproducing device includes: a data comparing section which compares, at the time of ejection of an optical disc, recorded information recorded on a ROM layer of the optical disc and relevant information (e.g., additional data) which is stored in the recording/reproducing device and which is related to registered information (e.g., content) recorded on an RE layer of the optical disc; and a data selecting section which selects, based on a result of the comparison by the data comparing section, relevant information for recording to be recorded on the ROM layer of the optical disc from among the relevant information.
摘要:
Incident light can be efficiently converted into near-field light whose spot size is small. A waveguide 10 includes: a metallic member 11 made of a metallic material; and a dielectric member 12 made of a dielectric material. The metallic member 11 includes a first interface 16 and a second interface 18 so as to sandwich the dielectric member 12. The first interface and the second interface are provided so that an inter-interface distance therebetween may decrease from ends 16c and 18c to ends 16d and 18d. The first interface 16 and the second interface 18 have flections P16 and P18, respectively.
摘要:
A magnetic recording medium (1a) includes: a plurality of magnetic dots (13), provided on a substrate (11), in each of which information is stored by heating of the magnetic body; and separator layers (50). Each of the separator layers (50) is structured such that a metallic body layer (52) and two dielectric body layers (51) are alternately stacked in an in-plane direction of the substrate (11). Each of the separator layers (50) separates two magnetic dots from each other in the in-plane direction. Both sides of each of the magnetic dots (13) in the in-plane direction of the substrate (11) have contact with two dielectric body layers (52), respectively. This provides a magnetic recording medium (1a) whose magnetic dots (13) can be entirely heated with a reduction in the amount of power that is consumed by a recording head.
摘要:
A magnetic sensing section is constituted by a magneto-resistive device in which a fixed magnetization layer, a non-magnetic layer, and a magnetization-free layer are deposited in that order on a first buffer layer that is deposited on a magnetic layer. A second buffer layer sandwiches the magnetic sensing section, and a biasing layer which covers right and left sides of the magnetic sensing section. The second buffer layer is deposited on the magnetic layer with a nonconductor layer interposed therebetween. A near field light generation section constituted by a second magnetic layer, a dielectric layer, and a metal layer is formed on a surface of the second buffer layer not adjacent to the nonconductor layer. The resultant magnetic sensor device can efficiently perform photo-assisted reproduction of information from a magnetic recording medium using a magnetic reproduction head or a magnetic reproducer.
摘要:
A method of the present invention for forming fine particles includes forming fine particles on a substrate by supplying, in the presence of inert gas, to the substrate, atoms or molecules of a supply material capable of being combined with a material constituting a surface of the substrate to produce a compound, the atoms or the molecules being supplied from a supply source. The supply source is positioned in such a manner as not to be directly connected by a line with the surface of the substrate where the fine particles are to be formed, and a high-frequency voltage varying positively and negatively, ranging from 100 kHz to 100 MHz, is applied to at least one of the substrate and a substrate supporter for supporting the substrate. This realizes a method for forming fine particles that allows forming highly uniformed magnetic fine particles with a periodic pattern through a simple process at a time.