摘要:
A temperature sensor including a temperature sensitive device which is disposed in a flow path through which fluid flows and whose electric characteristic changes as a function of temperature of the fluid in the flow path, signal lines connected at top end sides thereof to said temperature sensitive device through electrode wires and at base end sides thereof to lead wires for connection with an external circuit, a sheath member retaining the signal lines therein, and a holding member which holds an outer circumferential surface of said sheath member directly or indirectly through another member. The resonance (primary) frequency at a top end of the temperature sensor against acceleration in a radius direction of the temperature sensor is 480 Hz or less, thereby reducing the transmission of vibration to the top end of the temperature sensor to avoid the breakage of the temperature sensitive device and the disconnection of the electrode wires 502102 even when the temperature sensor resonates.
摘要:
A temperature sensor including a temperature sensitive device which is disposed in a flow path through which fluid flows and whose electric characteristic changes as a function of temperature of the fluid in the flow path, signal lines connected at top end sides thereof to said temperature sensitive device through electrode wires and at base end sides thereof to lead wires for connection with an external circuit, a sheath member retaining the signal lines therein, and a holding member which holds an outer circumferential surface of said sheath member directly or indirectly through another member. The resonance (primary) frequency at a top end of the temperature sensor against acceleration in a radius direction of the temperature sensor is 480 Hz or less, thereby reducing the transmission of vibration to the top end of the temperature sensor to avoid the breakage of the temperature sensitive device and the disconnection of the electrode wires 502102 even when the temperature sensor resonates.
摘要:
The temperature sensor 1 is equipped with a temperature sensitive device 2 to be disposed inside an exhaust pipe of an internal combustion engine, signal lines 31 connected at a top end side to the temperature sensitive device 2 and at a rear end side to leads for connection with an external circuit, an inner member 18 having a sheath pin 3 in which the signal lines 31 are disposed, and an outer member 13 disposed to cover at least a portion of an outer periphery of the inner member 18. The outer member 13 includes a fixed portion (rib 6) to be fixed to an upper wall of the exhaust pipe, a retainer portion 132 retaining the inner member 18, and an extending portion 131 formed closer to a top end side than the retainer portion 132. The extending portion 131 includes a clearance portion 19 disposed so as to have an air gap between itself and the inner member 18 and a front interference portion 133 disposed in a condition that a maximum air gap between the front interference portion 133 and the inner member 18 in a radius direction is 0.2 mm or less.
摘要:
The temperature sensor 1 is equipped with a temperature sensitive device 2 to be disposed inside an exhaust pipe of an internal combustion engine, signal lines 31 connected at a top end side to the temperature sensitive device 2 and at a rear end side to leads for connection with an external circuit, an inner member 18 having a sheath pin 3 in which the signal lines 31 are disposed, and an outer member 13 disposed to cover at least a portion of an outer periphery of the inner member 18. The outer member 13 includes a fixed portion (rib 6) to be fixed to an upper wall of the exhaust pipe, a retainer portion 132 retaining the inner member 18, and an extending portion 131 formed closer to a top end side than the retainer portion 132. The extending portion 131 includes a clearance portion 19 disposed so as to have an air gap between itself and the inner member 18 and a front interference portion 133 disposed in a condition that a maximum air gap between the front interference portion 133 and the inner member 18 in a radius direction is 0.2 mm or less.
摘要:
A spark plug for an internal combustion engine is disclosed having a metal shell having an outer periphery formed with a mounting thread, a porcelain insulator fixedly secured to the metal shell on a central axis thereof, a center electrode retained within the porcelain insulator along a central axis thereof with a distal end located outside the porcelain insulator, and a ground electrode joined to the metal shell and having an end associated with the distal end of the center electrode to define therebetween a spark discharge gap. The ground electrode includes a facing surface intersecting the central axis of the center electrode and having a width equal to or less than 1.6 mm.
摘要:
A storage reduction NOx catalyst is disposed in an exhaust passage for an internal combustion engine. A NOx sensor is disposed upstream of the NOx catalyst. An inflow NOx amount, which is the amount of NOx that has flown into the NOx catalyst, is calculated by accumulating the output of the NOx sensor. A total storage amount, which is the sum of the amounts of oxygen and NOx stored in the NOx catalyst, is calculated based on an output generated by an exhaust gas sensor disposed downstream of the NOx catalyst when rich spike is being executed. The deterioration of the NOx catalyst is determined based on the inflow NOx amount and the total storage amount.
摘要:
A spark plug for an internal combustion engine is disclosed having a metal shell having an outer periphery formed with a mounting thread, a porcelain insulator fixedly secured to the metal shell on a central axis thereof, a center electrode retained within the porcelain insulator along a central axis thereof with a distal end located outside the porcelain insulator, and a ground electrode joined to the metal shell and having an end associated with the distal end of the center electrode to define therebetween a spark discharge gap. The ground electrode includes a facing surface intersecting the central axis of the center electrode and having a width equal to or less than 1.6 mm.
摘要:
A spark plug is provided which ensures the reliability of a weld between a noble metal chip and a ground electrode as well as higher durability and ignitability of fuel. The ground electrode is joined to a metal shell, after which the noble metal chip is laser-welded to the ground electrode. The laser welding is achieved by emitting laser beams around an interface between the noble metal chip and the ground electrode outside a given angular range within which the metal shell will be an obstruction to the traveling of the laser beams. Specifically, the laser beams are emitted without any optical interference with the metal shell. This permits the angle between the orientation of each of the laser beams and the surface of the ground electrode to be minimized regardless of the metal shell, thus ensuring a desired depth of the fused portions in the noble metal chip.
摘要:
A spark plug according to the present invention includes a metal shell, an insulator, a cylindrical center electrode, a first ground electrode, and a second ground electrode. The first ground electrode is aligned with the center electrode in the axial direction of the center electrode to form a first spark gap, across which normal sparks are discharged when the insulator is not fouled with carbon. The second ground electrode is aligned with the center electrode in the radial direction of the center electrode to form a second spark gap, across which side sparks are discharged when the insulator is fouled with carbon. The spark plug has an improved structure where dimensional parameters A, T, B, C, L, D, and E are specified to be in suitable ranges that are determined through experimental investigation. The improved structure ensures a high ignition capability and a long service life of the spark plug.
摘要:
Carbon fouling adhered on an insulator tip of a spark plug of the present invention is burnt down by a leak current during an inductive discharge period, due to a promoted ionization before beginning a capacitive discharge, in such an arrangement of a central electrode that a border portion of a body and narrowed portion is positioned in an insulator. The carbon burning-down effect is further improved by a narrow projection provided with an earth electrode, due to increased inductive energy and extended inductive discharge time period. This is because an electric field in a discharge gap is raised, thereby decreasing a discharge voltage and suppressing an energy emitted from a coil during the capacitive discharge.