Abstract:
An apparatus including a shaft configured to be gripped by a user to provide input to a touch input panel; and a tip located at an interacting end of the apparatus for interacting with the touch input panel, the tip including an electrically conductive element and an electrically insulating material, the electrically insulating material configured to capacitively decouple the electrically conductive element from the shaft and/or user, wherein the electrically conductive element is configured to couple capacitively to an electrotactile electrode of the touch input panel when the electrically conductive element is in proximity to the electrotactile electrode, capacitive coupling between the electrically conductive element and the electrotactile electrode creates vibrations in the tip to cause a variation in the frictional force between the tip and the touch input panel as perceived by a user gripping the shaft during relative lateral movement of the tip and touch input panel.
Abstract:
An apparatus comprises a first magnetic plate; a second magnetic plate oriented parallel no the first magnetic plate, magnetically coupled to the first magnetic plate, and slidable relative to the first magnetic plate; a dielectric material positioned between the first magnetic plate and the second magnetic plate; and a contact in communication with the first magnetic plate and the second magnetic plate through which a voltage is applied, the voltage generating a signal that is responsive to a task performed on a mobile device, the signal providing a haptic effect to the first magnetic plate and the second magnetic plate upon sliding of the first magnetic plate relative to the second magnetic plate.
Abstract:
A method of fabricating at least a portion of the body of an apparatus, such as a portable electronic device, that includes both plastic and conductive parts is provided with the body appearing relatively seamless such that the interface between the plastic and conductive parts is indistinguishable. In this regard, a plastic part may be combined with a conductive part to form at least a portion of the body of the portable electronic device. The surfaces of the plastic part and the conductive part may be metallized, such as by being subjected to vapor deposition, to metalize the surfaces of the plastic and conductive parts. The metalized surfaces of the plastic and conductive parts may then be anodized, thereby producing at least a portion of the body of a portable electronic device having plastic and conductive parts with a consistent appearance and a consistent tactile response.
Abstract:
A method of fabricating the body of the portable electronic device as well as the resulting portable electronic device and its body are provided to facilitate the transmission of radio frequency signals through the body of the portable electronic device. In the context of a method, at least one aperture and, in some instances, a plurality of apertures are defined by laser perforation through a conductive portion of the body of the portable electronic device. The method may also anodize the conductive portion including at least partially filling the at least one aperture with an anodization layer. As such, the conductive portion of the body of the portable electronic device has a relatively consistent, metallic appearance, even though laser perforation apertures are defined therein for supporting the transmission of radio frequency signals.