Abstract:
A display protector for use with a heat source, the display protector including one or more transparent fluid incident regions and one or more fluid driver regions, wherein the display protector is configured to guide a fluid incident upon one or more of the transparent fluid incident regions away to one or more of the fluid driver regions to facilitate driving of the fluid from the one or more fluid driver regions by heat supplied by the heat source.
Abstract:
A substrate including a fluid reservoir and a connected fluid channel, the fluid reservoir positioned away from a component region of the substrate, the fluid channel configured to extend from the fluid reservoir to guide an electrically conductive fluid from the fluid reservoir at a reservoir end of the fluid channel through the fluid channel to a component end of the fluid channel, the component end extending to the component region of the substrate to enable the formation of an electrical connection to a connector of an electronic component appropriately positioned in the component region, formation of the electrical connection allowing the electronic component to be interconnected to other electronic components using one or more of the fluid reservoir and fluid channel.
Abstract:
An apparatus comprises a first magnetic plate; a second magnetic plate oriented parallel no the first magnetic plate, magnetically coupled to the first magnetic plate, and slidable relative to the first magnetic plate; a dielectric material positioned between the first magnetic plate and the second magnetic plate; and a contact in communication with the first magnetic plate and the second magnetic plate through which a voltage is applied, the voltage generating a signal that is responsive to a task performed on a mobile device, the signal providing a haptic effect to the first magnetic plate and the second magnetic plate upon sliding of the first magnetic plate relative to the second magnetic plate.
Abstract:
A wearable apparatus including a waveguide configured to act as a conduit for light emitted from an illumination source to a photodetector via an interaction portion of the waveguide, the interaction portion configured to channel the light out of the waveguide to enable interaction of the light with a wearer's body and back into the waveguide to enable detection of the interacted light by the photodetector.
Abstract:
The present invention may relate to provision of a mechanism to join together the various substrate layers of a flexible display with optically clear adhesives that permit improved flexibility of the substrate layer stack and may also optically guide images to locations on a display surface that are not aligned with the display layer of a substrate layer stack. Embodiments of the present invention may provide for an improved user interface which may include enhanced flexibility and enhanced optical characteristics.
Abstract:
An apparatus including a shaft configured to be gripped by a user to provide input to a touch input panel; and a tip located at an interacting end of the apparatus for interacting with the touch input panel, the tip including an electrically conductive element and an electrically insulating material, the electrically insulating material configured to capacitively decouple the electrically conductive element from the shaft and/or user, wherein the electrically conductive element is configured to couple capacitively to an electrotactile electrode of the touch input panel when the electrically conductive element is in proximity to the electrotactile electrode, capacitive coupling between the electrically conductive element and the electrotactile electrode creates vibrations in the tip to cause a variation in the frictional force between the tip and the touch input panel as perceived by a user gripping the shaft during relative lateral movement of the tip and touch input panel.
Abstract:
In some example embodiments, there may be provided an apparatus. The apparatus may include a chamber including a first cavity and a second cavity, wherein the chamber further includes a first fluid suspended in a second fluid; a first electrode adjacent to the first cavity; a second electrode adjacent to the second cavity; a third electrode configured to provide a common electrode to the first electrode and the second electrode; and at least one coil adjacent to at least one of the first cavity or the second cavity, wherein an inductance value of the coil is varied by at least applying a driving signal between the common electrode and the first electrode and/or the second electrode. Related methods, systems, and articles of manufacture are also disclosed.
Abstract:
An apparatus and method of forming an apparatus wherein the apparatus includes a first electrode and a second electrode arranged to form a parallel plate capacitor; a compressible, transparent dielectric layer provided between the first electrode and the second electrode wherein the dielectric layer has a nanostructure and the dimensions of the nanostructure are such that the dielectric layer is optically transparent.
Abstract:
In some example embodiments, there may be provided an apparatus. The apparatus may include a chamber including a first cavity and a second cavity, wherein the chamber further includes a first fluid suspended in a second fluid; a first electrode adjacent to the first cavity; a second electrode adjacent to the second cavity; a third electrode configured to provide a common electrode to the first electrode and the second electrode; and at least one coil adjacent to at least one of the first cavity or the second cavity, wherein an inductance value of the coil is varied by at least applying a driving signal between the common electrode and the first electrode and/or the second electrode. Related methods, systems, and articles of manufacture are also disclosed.
Abstract:
A wearable apparatus including a plurality of waveguides each configured to act as a conduit for light emitted from an illumination source to a photodetector via an interaction portion of the respective waveguide, the interaction portion of each waveguide configured to channel the light out of the respective waveguide to enable interaction of the light with the wearer's body and back into the respective waveguide to enable detection of the interacted light by the photodetector.