Abstract:
The present invention relates to a visor for intercepting laser light for medical treatment, which is worn by a surgical operator or an assistant in conducting a surgical operation or diagnosis using the laser light. The visor has a frame which is provided with a shield in such a manner that the shield covers at least both eyes, and the shield is a thin plastic molded article having a reflective film on its surface for reflecting the laser light. Said shield may be detachable from a visor main body. Said reflective film comprises a multi-layered vacuum deposited film made of silicon dioxide, for example.
Abstract:
The present invention relates to a system for irradiating a living body with laser light. The system is excellent in treatment effect by enhancing the absorption efficiency of laser light at a target area of the living tissue. The system comprises a target means located on the surface or in the inside of a living tissue to be treated including a material which absorbs the laser light to generate heat; and means for irradiating said target with the laser light to generate heat.
Abstract:
A catheter apparatus has an information detecting sensor which is capable of positively controlling an intended treatment effect at a selected position at which laser energy is irradiated, to treat conditions such as solidification or necrosis of tissue. The catheter apparatus comprises a rigid sheath formed to be safely inserted into a body cavity. A window is provided at the front end portion of the sheath to allow a movable sensor to be moved in or out through the window. A balloon means having an inflatable balloon is provided in the sheath adjacent to the sensor. The balloon means is secured to the sheath and is biased through an opening on the opposite side of the sheath toward an adjacent wall portion of the body cavity in a direction opposite to the side of the window when the balloon is inflated. The sensor is thereby projected through the window and is brought into close contact with a correspondingly adjacent portion of the cavity wall by a reaction force of the inflated balloon.
Abstract:
A laser medical probe adapted for direct contact with, or insertion into, tissue undergoing laser treatment. The probe includes a laser energy transmissive surface for emitting radiation from the probe. The probe surface includes a layer of laser transmissive particles for diffusing laser energy passing therethrough and an affixing material for affixing the particles to the probe surface. Laser energy emitted from the surface may be coupled into the particles and irregularly refracted and reflected thereby causing a wide laser energy radiation profile. The affixing material and the particles form a tissue contact surface for directly contacting the tissue undergoing treatment. A substantial number of the particles partially extend from the affixing material. The resultant tissue contact surface is rough. The affixing material may be a ceramic bonding agent.
Abstract:
A medical and surgical laser probe which is provided with a contact member made of a laser transmitting material in front of a forward end of a laser guide so as to enable the probe to be used in contact with the tissue. The contact member has a specified configuration which causes no substantial convergency so as to be specially adapted coagulation treatment. With the contact member of the present invention, the coagulation treatment can be carried out effectively.
Abstract:
The present invention relates to an apparatus for medical treatment and in particular to an apparatus for medical treatment which is miniaturized to such a size that it can be used together with an endoscope and is capable of incising living tissue with less bleeding. The apparatus for medical treatment is characterized in that said apparatus includes: an outer probe which is in a form of hook; an inner probe which faces said outer probe and is capable of being in and out of contact with said inner probe in a longitudinal direction by the operator's actuation; and heating means for heating a target tissue to be treated which is disposed between said outer and inner probes.
Abstract:
A laser catheter for the treatment of lesions and plaque deposits in arteries and other narrow paths having a radiation assembly affixed to a flexible conduit. The conduit generally includes multiple lumens for the passage of an optical fiber, a guide wire, a cooling medium therethrough, or fluid for inflating an angioplasty balloon. The radiation assembly is of short longitudinal profile and includes a generally spherical laser contact member retained within a housing, the latter affixed to the flexible conduit. The radiation assembly provides a dual-mode ablation/melting treatment regime. A longitudinal channel is provided through and along one side of the contact member thereby to permit guide wire positioning of the laser catheter while routing the guide wire away from the laser energy to avoid damage thereto. A balloon, in fluid communication with a catheter lumen, may be positioned rearwardly of the radiation assembly for secondary balloon angioplasty operations.
Abstract:
The present invention relates to an apparatus for laser treatment for treating the tissue of a human body such as herniated lumbar intervertebral disc by irradiating it with laser light for vaporizing it. The apparatus comprises a hollow needle member which is percutaneously inserted into the target tissue; an optical fiber for transmitting therethrough a laser light from a laser light generator to emit the laser light from the front end thereof; a lead for detecting the temperature of said target tissue and the vicinity thereof; and means for introducing gas which is generated due to vaporization of said irradiated tissue to the outside of the body through the inside of said needle member; and generated gas detecting means for detecting the flow speed or flow rate of the gas which is generated due to the vaporization of said target tissue. The optical fiber and the temperature detecting lead are inserted into said needle member from the base end thereof. The front end of said optical fiber is positioned in said target position. The flow speed or flow rate of the gas is detected by said generated gas detecting means. The temperature of said target tissue and its vicinity is detected based upon a signal of the temperature from said temperature detecting lead. The manner of irradiation with the laser light is controlled based upon the flow speed or flow rate of the detected gas and said temperature.
Abstract:
A dental handpiece 1 having a laser irradiation switch 5 on a hand grip 2 portion and a bent guide tube 6A through which an optical fiber 7 for introducing laser light to its distal end is inserted, is characterized in that said laser irradiation switch 5 can be rotated around the longitudinal axis of the handpiece 1 together with a holder member 3 which is fitted on the outer periphery of the hand grip 2 and a part (2A) of the hand grip holder 2.
Abstract:
An apparatus performs operations such as incision, coagulation and evaporation of the tissue of a living body such as human body with laser lights. An apparatus for performing a surgical operation of the tissue of a living body with laser lights while contacting a blade with the tissue of the living body comprising a holding portion which is held by an operator, a blade which is integral with the holding portion and is made of a material which generates heat on exposure to laser lights and can not transmit the laser lights therethrough, and an optical fiber which receives laser lights for emitting the laser lights from the front end thereof, said blade being positioned in such a manner that a part of said blade is located in the irradiation area of the laser lights from said optical fiber and said optical fiber being movable toward and away from said blade while said optical fiber is held by said holding portion.