摘要:
The invention provides compositions and methods for making closed nucleic acid structures in which one or both strands are continuous. The closed nucleic acid structures can be used as sequencing templates among other applications.
摘要:
The invention provides compositions and methods for making closed nucleic acid structures in which one or both strands are continuous. The closed nucleic acid structures can be used as sequencing templates among other applications.
摘要:
Compositions that are used in nucleic acid amplification in vitro are disclosed, which include a target specific universal (TSU) promoter primer or promoter provider oligonucleotide that includes a target specific (TS) sequence that hybridizes specifically to a target sequence that is amplified and a universal (U) sequence that is introduced into the sequence that is amplified, by using a primer for the universal sequence. Methods of nucleic acid amplification in vitro are disclosed that use one or more TSU oligonucleotides to attached a U sequence to a target nucleic acid in a target capture step and then use a primer for a U sequence in subsequent amplification steps performed in substantially isothermal conditions to make amplification products that contain a U sequence that indicates the presence of the target nucleic acid in a sample.
摘要:
Compositions, reaction mixtures, and methods for performing an amplification reaction, including multiplex amplification reaction, wherein the method comprises using one or more amplification oligomer complexes comprising linked first and second amplification oligomer members. In one aspect, the amplification oligomer complex is hybridized to a target nucleic acid, the target nucleic acid with hybridized amplification oligomer complex is then captured, and other components are washed away. Target sequences of the target nucleic acids are pre-amplified to generate a first amplification product. The first amplification product is amplified in one or more secondary amplification reactions to generate second amplification products.
摘要:
Compositions that are used in nucleic acid amplification in vitro are disclosed, which include a target specific universal (TSU) promoter primer or promoter provider oligonucleotide that includes a target specific (TS) sequence that hybridizes specifically to a target sequence that is amplified and a universal (U) sequence that is introduced into the sequence that is amplified, by using a primer for the universal sequence. Methods of nucleic acid amplification in vitro are disclosed that use one or more TSU oligonucleotides to attached a U sequence to a target nucleic acid in a target capture step and then use a primer for a U sequence in subsequent amplification steps performed in substantially isothermal conditions to make amplification products that contain a U sequence that indicates the presence of the target nucleic acid in a sample.
摘要:
Compositions, reaction mixtures, and methods for performing an amplification reaction, including multiplex amplification reaction, wherein the method comprises using one or more amplification oligomer complexes comprising linked first and second amplification oligomer members. In one aspect, the amplification oligomer complex is hybridized to a target nucleic acid, the target nucleic acid with hybridized amplification oligomer complex is then captured, and other components are washed away. Target sequences of the target nucleic acids are pre-amplified to generate a first amplification product. The first amplification product is amplified in one or more secondary amplification reactions to generate second amplification products.
摘要:
Compositions, reaction mixtures, and methods for performing an amplification reaction, including multiplex amplification reaction, wherein the method comprises using one or more amplification oligomer complexes comprising linked first and second amplification oligomer members. In one aspect, the amplification oligomer complex is hybridized to a target nucleic acid, the target nucleic acid with hybridized amplification oligomer complex is then captured, and other components are washed away. Target sequences of the target nucleic acids are pre-amplified to generate a first amplification product. The first amplification product is amplified in one or more secondary amplification reactions to generate second amplification products.
摘要:
Methods for selecting tag-oligonucleotide sequences for use in an in vitro nucleic acid assay. The selected tag sequences are useful for nucleic acid assay wherein interference between the nucleic acid sequences is the assay is to be controlled. Selected tag sequences are incorporated into nucleic acid assay to improve the performance of and/or minimize any interference between nucleic acids in the assay compared to untagged assays.
摘要:
Methods for selecting tag-oligonucleotide sequences for use in an in vitro nucleic acid assay. The selected tag sequences are useful for nucleic acid assay wherein interference between the nucleic acid sequences is the assay is to be controlled. Selected tag sequences are incorporated into nucleic acid assay to improve the performance of and/or minimize any interference between nucleic acids in the assay compared to untagged assays.
摘要:
The present invention is directed to novel methods of synthesizing multiple copies of a target nucleic acid sequence which are autocatalytic (i.e., able to cycle automatically without the need to modify reaction conditions such as temperature, pH, or ionic strength and using the product of one cycle in the next one). In particular, the present invention discloses a method of nucleic acid amplification which is robust and efficient, while reducing the appearance of side products. The method uses only one primer, the “priming oligonucleotide,” a 3′blocked promoter oligonucleotide and optionally, a means for terminating a primer extension reaction, to amplify RNA or DNA molecules in vitro, while reducing or eliminating the formation of side products. The method of the present invention minimizes or eliminates the emergence of side products, thus providing a high level of specificity. Furthermore, the appearance of side products can complicate the analysis of the amplification reaction by various molecular detection techniques. The present invention minimizes or eliminates this problem, thus providing an enhanced level of sensitivity.