Abstract:
In various embodiments methods and devices are provided for the detection and/or quantification of an analyte. In certain embodiments a device is provided comprising an aqueous two-phase system (ATPS) comprising a mixed phase solution that separates into a first phase solution and a second phase where, in use, said first phase solution becomes a leading phase and said second phase solution becomes a lagging phase; a lateral-flow assay (LFA); and a probe and/or a development reagent, where in use, said probe associates with said first phase solution in said leading phase of said ATPS and/or said development reagent associates with said second phase solution in said lagging phase of said ATPS. In certain embodiments a “one-pot” system of purifying and amplifying a nucleic acid is provided utilizing, e.g., an ATPS and isothermal amplification reagents.
Abstract:
Disclosed herein are method for separating, amplifying, or detecting a nucleic acid from a sample may comprise contacting a sample lysate with a plurality of buoyant, inorganic, nucleic-acid-capture microspheres. The nucleic-acid-capture microspheres may comprise unicellular hollow microspheres having a diameter between 5 and 300 μm and/or a true particle density between 0.05 and 0.60 grams/cm3. The microspheres may comprise hollow soda-lime-borosilicate microspheres. In some embodiments, the microspheres comprises hollow soda-lime-borosilicate microspheres surrounded by an amorphous silica shell. Also disclosed are kits for performing the methods.
Abstract:
A microfluidic diagnostic chip may comprise a microfluidic channel, a functionalizable enzymatic sensor in the microfluidic channel, the functionalizable enzymatic sensor comprising a binding surface to bind with a biomarker in a fluid, and a microfluidic pump to pass the fluid over the binding surface. A microfluidic device may comprise a number of pumps to pump a fluid though the number of microfluidic channels and a number of microfluidic channels comprising at least one sensor to detect a change in a chemical characteristic of the fluid in response to presence of the fluid on the sensor
Abstract:
Compositions, reaction mixtures, and methods for performing an amplification reaction, including multiplex amplification reaction, wherein the method comprises using one or more amplification oligomer complexes comprising linked first and second amplification oligomer members. In one aspect, the amplification oligomer complex is hybridized to a target nucleic acid, the target nucleic acid with hybridized amplification oligomer complex is then captured, and other components are washed away. Target sequences of the target nucleic acids are pre-amplified to generate a first amplification product. The first amplification product is amplified in one or more secondary amplification reactions to generate second amplification products.
Abstract:
This disclosure provides methods for preparing a sequencing library including the steps of providing a template nucleic acid sequence, dNTPs, dUTP, a primer, a polymerase, a dUTP excising enzyme, and a plurality of beads including oligonucleotide adapter sequence segments; amplifying the template nucleic acid with the polymerase, dNTPs, dUTP and random hexamer to provide a complementary nucleic acid sequence including occasional dUTPs; and excising the incorporated dUTPs with the dUTP excising enzyme to provide nicks in the complementary nucleic acid sequence to provide a sequencing library.
Abstract:
Compositions, reaction mixtures, and methods for performing an amplification reaction, including multiplex amplification reaction, wherein the method comprises using one or more amplification oligomer complexes comprising linked first and second amplification oligomer members. In one aspect, the amplification oligomer complex is hybridized to a target nucleic acid, the target nucleic acid with hybridized amplification oligomer complex is then captured, and other components are washed away. Target sequences of the target nucleic acids are pre-amplified to generate a first amplification product. The first amplification product is amplified in one or more secondary amplification reactions to generate second amplification products.
Abstract:
The invention is directed to systems, methods, and apparatus for carrying out multi-stage amplification reactions, especially under fluidly closed conditions. In one aspect, methods of the invention are carried out in a fluidly closed reaction system that permits the isolation of a portion of a first (or prior) reaction mixture and its use as a sample or specimen in a second (or subsequent) reaction mixture, thereby substantially avoiding interfering effects that first reaction components may have in the second reaction if both reaction mixtures were simply combined together. In this aspect, systems, methods, and apparatus of the invention may be used with any amplification reaction that permits multiple stages of amplification based on the use of nested primers.
Abstract:
Compositions that are used in nucleic acid amplification in vitro are disclosed, which include a target specific universal (TSU) promoter primer or promoter provider oligonucleotide that includes a target specific (TS) sequence that hybridizes specifically to a target sequence that is amplified and a universal (U) sequence that is introduced into the sequence that is amplified, by using a primer for the universal sequence. Methods of nucleic acid amplification in vitro are disclosed that use one or more TSU oligonucleotides to attached a U sequence to a target nucleic acid in a target capture step and then use a primer for a U sequence in subsequent amplification steps performed in substantially isothermal conditions to make amplification products that contain a U sequence that indicates the presence of the target nucleic acid in a sample.
Abstract:
The present invention is related to nucleic acid sequences that can be used in the field of virus diagnostics, more specifically the diagnosis of infections with a novel human coronavirus causing Severe Acute Respiratory Syndrome (SARS). With the present invention nucleotide sequences are provided that can be used as primers and probes in the amplification and detection of SARS nucleic acid. The oligonucleotide sequences provided with the present invention are located in the replicase gene, the nucleocapsid gene and the 3′ end non-coding region of the SARS Coronavirus genome. It has been found that, by using the sequences of the present invention in methods for the amplification and detection of nucleic acid a sensitive and specific detection of SARS Coronavirus can be obtained. The oligonucleotide sequences according to the present invention are especially useful in methods for the amplification of nucleic acid.
Abstract:
Compositions that are used in nucleic acid amplification in vitro are disclosed, which include a target specific universal (TSU) promoter primer or promoter provider oligonucleotide that includes a target specific (TS) sequence that hybridizes specifically to a target sequence that is amplified and a universal (U) sequence that is introduced into the sequence that is amplified, by using a primer for the universal sequence. Methods of nucleic acid amplification in vitro are disclosed that use one or more TSU oligonucleotides to attached a U sequence to a target nucleic acid in a target capture step and then use a primer for a U sequence in subsequent amplification steps performed in substantially isothermal conditions to make amplification products that contain a U sequence that indicates the presence of the target nucleic acid in a sample.