Abstract:
The instant invention pertains to a method for producing contact lenses with improved oxidative stability of Carotenoids in the contact lens. The method of the invention involves adding a vitamin E material into a contact lens in an amount sufficient to reduce oxidative degradation of Carotenoids in the lens by at least about 30% in comparison with an identical contact lens without the vitamin E material.
Abstract:
The invention is related to a disposable contact lens comprising a top coating which is made of a hydrophilic polymeric material including dangling hydrophilic polymer chains covalently linked to the hydrophilic polymeric material through oligo-caprolactone linkages susceptible to enzymatic degradation in the eyes. The top coating is stable to lens processing/storage and confers lubricity to the lens. However, it slowly is degraded during the lens wear due to the action of enzymes (e.g., Lipase) in tear film. The loss in lubricity will be experienced as a drop in comfort for the lens wearer and thereby serves as the built-in compliance features of the disposable contact lens.
Abstract:
The instant invention pertains to a method for producing contact lenses with improved oxidative stability of Carotenoids in the contact lens. The method of the invention involves adding a vitamine E material into a contact lens in an amount sufficient to reduce oxidative degradation of Carotenoids in the lens by at least about 30% in comparison with an identical contact lens without the vitamin E material.
Abstract:
The invention is related to a disposable contact lens comprising a top coating which is made of a hydrophilic polymeric material including dangling hydrophilic polymer chains covalently linked to the hydrophilic polymeric material through oligo-caprolactone linkages susceptible to enzymatic degradation in the eyes. The top coating is stable to lens processing/storage and confers lubricity to the lens. However, it slowly is degraded during the lens wear due to the action of enzymes (e.g., Lipase) in tear film. The loss in lubricity will be experienced as a drop in comfort for the lens wearer and thereby serves as the built-in compliance features of the disposable contact lens.